Untapped data resources : Applying NER for historical archival records of state authorities
Poso, V., Välisalo, T., Toivanen, I., Holmila, A., & Ojala, J. (2023). Untapped data resources : Applying NER for historical archival records of state authorities. In A. Rockenberger, J. Tiemann, & S. Gilbert (Eds.), DHNB2023 Conference Proceedings (5, pp. 55-69). University of Oslo Library. Digital Humanities in the Nordic and Baltic Countries Publications. https://doi.org/10.5617/dhnbpub.10650
Julkaistu sarjassa
Digital Humanities in the Nordic and Baltic Countries PublicationsPäivämäärä
2023Oppiaine
Hyvinvoinnin tutkimuksen yhteisöLaskennallinen tiedeNykykulttuurin tutkimusTaloushistoriaComputing, Information Technology and MathematicsSchool of WellbeingComputational ScienceContemporary CultureEconomic HistoryComputing, Information Technology and MathematicsTekijänoikeudet
© 2023 the Authors
Archives around the world are digitising their material at a growing speed. The National Archives of Finland launched a mass digitisation process in 2019 aiming to digitise vast amounts of state authority archives. In order to improve the access and use of this data by researchers, we present the data transfer process of state authority data and the development of named entity recognition (NER) for enriching and using archival data from state authorities. In this process, we have developed two new named entities that are not included in published NER models for the Finnish language. This work is conducted as part of the DARIAH-FI infrastructure.
Julkaisija
University of Oslo LibraryEmojulkaisun ISBN
978-82-8037-202-4Konferenssi
Digital Humanities in the Nordic and Baltic Countries conferenceKuuluu julkaisuun
DHNB2023 Conference ProceedingsISSN Hae Julkaisufoorumista
2704-1441Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194468580
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Making Sense of Bureaucratic Documents : Named Entity Recognition for State Authority Archives
Poso, Venla; Lipsanen, Mikko; Toivanen, Ida; Välisalo, Tanja (Society for Imaging Science & Technology, 2024)The usability and accessibility of digitised archival data can be improved using deep learning solutions. In this paper, the authors present their work in developing a named entity recognition (NER) model for digitised ... -
Kansallisarkisto kohti vuotta 2025
Ojala, Jari (Kansallisarkisto, 2020) -
Technology acceptance of digital historical record database systems among historians
Kemell, Kai-Kristian (2016)As information technology (IT) becomes increasingly prevalent in our society, academic research, too, makes increasingly extensive use of it. IT has influenced the work of historians in various ways. Especially the ... -
Music mood annotation using semantic computing and machine learning
Saari, Pasi (University of Jyväskylä, 2015) -
Domain‐specific neural networks improve automated bird sound recognition already with small amount of local data
Lauha, Patrik; Somervuo, Panu; Lehikoinen, Petteri; Geres, Lisa; Richter, Tobias; Seibold, Sebastian; Ovaskainen, Otso (Wiley-Blackwell, 2022)An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.