Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling
dc.contributor.author | Sokolovskii, Ilia | |
dc.contributor.author | Tichauer, Ruth H. | |
dc.contributor.author | Morozov, Dmitry | |
dc.contributor.author | Feist, Johannes | |
dc.contributor.author | Groenhof, Gerrit | |
dc.date.accessioned | 2023-11-08T09:50:45Z | |
dc.date.available | 2023-11-08T09:50:45Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Sokolovskii, I., Tichauer, R. H., Morozov, D., Feist, J., & Groenhof, G. (2023). Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. <i>Nature Communications</i>, <i>14</i>, Article 6613. <a href="https://doi.org/10.1038/s41467-023-42067-y" target="_blank">https://doi.org/10.1038/s41467-023-42067-y</a> | |
dc.identifier.other | CONVID_194231471 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/91815 | |
dc.description.abstract | Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Nature Communications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | chemical physics | |
dc.subject.other | electronic properties and materials | |
dc.subject.other | light harvesting | |
dc.subject.other | molecular dynamics | |
dc.subject.other | photonic devices | |
dc.title | Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202311087855 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2041-1723 | |
dc.relation.volume | 14 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2023 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 323996 | |
dc.relation.grantnumber | 332743 | |
dc.subject.yso | polaritonit | |
dc.subject.yso | molekyylidynamiikka | |
dc.subject.yso | sähköiset ominaisuudet | |
dc.subject.yso | nanotekniikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38894 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29332 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19648 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11463 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41467-023-42067-y | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland (Grant No. 323996 and 332743 to G.G.), the European Research Council (Grant No. ERC-2016-StG-714870 to J.F.), and by the Spanish Ministry for Science, Innovation, Universities-Agencia Estatal de Investigación (AEI) to J.F. through Grants PID2021-125894NB-I00 and CEX2018-000805-M (through the María de Maeztu program for Units of Excellence in Research and Development). We thank J. Jussi Toppari, A. M. Berghuis, J. Gómez Rivas, T. Schwartz, M. Balusubrahmaniyam and D. Sanvitto for fruitful discussions. We also thank the Center for Scientific Computing (CSC-IT Center for Science) for generous computational resources, and N. Runenberg for his assistance in running the simulations on these resources. | |
dc.type.okm | A1 |