Multi-scale dynamics simulations of molecular polaritons : the effect of multiple cavity modes on polariton relaxation
Tichauer, R. H., Feist, J., & Groenhof, G. (2021). Multi-scale dynamics simulations of molecular polaritons : the effect of multiple cavity modes on polariton relaxation. Journal of Chemical Physics, 154(10), Article 104112. https://doi.org/10.1063/5.0037868
Julkaistu sarjassa
Journal of Chemical PhysicsPäivämäärä
2021Tekijänoikeudet
© 2021 Author(s).
Coupling molecules to the confined light modes of an optical cavity is showing great promise for manipulating chemical reactions. However, to fully exploit this principle and use cavities as a new tool for controlling chemistry, a complete understanding of the effects of strong light–matter coupling on molecular dynamics and reactivity is required. While quantum chemistry can provide atomistic insight into the reactivity of uncoupled molecules, the possibilities to also explore strongly coupled systems are still rather limited due to the challenges associated with an accurate description of the cavity in such calculations. Despite recent progress in introducing strong coupling effects into quantum chemistry calculations, applications are mostly restricted to single or simplified molecules in ideal lossless cavities that support a single light mode only. However, even if commonly used planar mirror micro-cavities are characterized by a fundamental mode with a frequency determined by the distance between the mirrors, the cavity energy also depends on the wave vector of the incident light rays. To account for this dependency, called cavity dispersion, in atomistic simulations of molecules in optical cavities, we have extended our multi-scale molecular dynamics model for strongly coupled molecular ensembles to include multiple confined light modes. To validate the new model, we have performed simulations of up to 512 Rhodamine molecules in red-detuned Fabry–Pérot cavities. The results of our simulations suggest that after resonant excitation into the upper polariton at a fixed wave vector, or incidence angle, the coupled cavity-molecule system rapidly decays into dark states that lack dispersion. Slower relaxation from the dark state manifold into both the upper and lower bright polaritons causes observable photo-luminescence from the molecule–cavity system along the two polariton dispersion branches that ultimately evolves toward the bottom of the lower polariton branch, in line with experimental observations. We anticipate that the more realistic cavity description in our approach will help to better understand and predict how cavities can modify molecular properties.
...
Julkaisija
AIP PublishingISSN Hae Julkaisufoorumista
0021-9606Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51904115
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was supported by the Academy of Finland (Grant No. 323996 to G.G.) as well as the European Research Council (Grant No. ERC-2016-StG714870 to J.F.) and the Spanish Ministry for Science, Innovation, and Universities—AEI (Grant No. RTI2018-099737-B-I00 to J.F.)Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Photochemical initiation of polariton-mediated exciton propagation
Sokolovskii, Ilia; Groenhof, Gerrit (De Gruyter, 2024)Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light–matter quasi-particles ... -
Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations
Groenhof, Gerrit; Climent, Clàudia; Feist, Johannes; Morozov, Dmitry; Toppari, J. Jussi (American Chemical Society, 2019)When photoactive molecules interact strongly with confined light modes in optical cavities, new hybrid light-matter states form. They are known as polaritons and correspond to coherent superpositions of excitations of the ... -
Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
Luk, Hoi Ling; Feist, Johannes; Toppari, Jussi; Groenhof, Gerrit (American Chemical Society, 2017)When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent ... -
One molecule to couple them all : Toward realistic numbers of molecules in multiscale molecular dynamics simulations of exciton-polaritons
Sokolovskii, Ilia; Morozov, Dmitry; Groenhof, Gerrit (American Institute of Physics, 2024)Collective strong coupling of many molecules to the confined light modes of an optical resonator can influence the photochemistry of these molecules, but the origin of this effect is not yet fully understood. To provide ... -
Tuning the Coherent Propagation of Organic Exciton‐Polaritons through the Cavity Q‐factor
Tichauer, Ruth H.; Sokolovskii, Ilia; Groenhof, Gerrit (Wiley-VCH Verlag, 2023)Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.