Synergistic effects of low-level magnesium and chromium doping on the electrochemical performance of LiNiO2 cathodes
Laine, P., Välikangas, J., Kauppinen, T., Hu, T., Wang, S., King, G., Singh, H., Tynjälä, P., & Lassi, U. (2024). Synergistic effects of low-level magnesium and chromium doping on the electrochemical performance of LiNiO2 cathodes. Journal of Solid State Electrochemistry, 28(1), 85-101. https://doi.org/10.1007/s10008-023-05652-1
Published in
Journal of Solid State ElectrochemistryAuthors
Hu, Tao |
Date
2024Copyright
© 2023 the Authors
LiNiO2 cathode materials with magnesium and chromium doping were prepared using a simple low - cost and efficient co - precipitation and lithiation procedure. During this procedure, both magnesium and chromium form a concentrated core particle, unto which nickel hydroxide precipitates. During lithiation, the elements in question will redistribute themselves and form a homogenous mixture. Magnesium - containing materials exhibit an excellent electrochemical performance, due to phase stabilizing effects, while for chromium - containing materials, performance remains poor. Rietveld refinement reveals that there is a possible upper limit for Mg doping (~ 2.5 mol %) as a pilar dopant. Washing of the lithiated materials was explored, and it is proposed that this can improve capacity retention in prolonged cycling. However, the inevitable loss of lithium from the surface layer remains a challenge. Two sources for the chromium facilitated capacity decay are proposed, both owing to the highly irreversible redox reaction of hexavalent chromium possibly blocking lithium pathways.
...
Publisher
SpringerISSN Search the Publication Forum
1432-8488Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/184732330
Metadata
Show full item recordCollections
Additional information about funding
Open Access funding provided by University of Oulu including Oulu University Hospital. This research was funded by Business Finland, grant number (University of Oulu, BATCircle2.0, No. 44612 / 31 / 2020).License
Related items
Showing items with similar title or keywords.
-
Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)2 : effect of magnesium doping and washing on the battery cell performance
Laine, Petteri; Hietaniemi, Marianna; Välikangas, Juho; Kauppinen, Toni; Tynjälä, Pekka; Hu, Tao; Wang, Shubo; Singh, Harishchandra; Lassi, Ulla (Royal Society of Chemistry, 2023)Co-precipitation of Ni0.8Co0.1Mn0.1(OH)2 (NCM811) and Mg-doped (0.25 wt% and 0.5 wt%) NCM811 precursors is carried out from concentrated metal sulphate solutions. In this paper, the aim is to study the role of magnesium ... -
Determining effects of doping lithium nickel oxide with tungsten using Compton scattering
Kothalawala, Veenavee Nipunika; Suzuki, Kosuke; Li, Xin; Barbiellini, Bernardo; Nokelainen, Johannes; Makkonen, Ilja; Ferragut, Rafael; Tynjälä, Pekka; Laine, Petteri; Välikangas, Juho; Hu, Tao; Lassi, Ulla; Takano, Kodai; Tsuji, Naruki; Amada, Yosuke; Sasikala, Devi Assa Aravindh; Alatalo, Matti; Sakurai, Yoshiharu; Sakurai, Hiroshi; Babar, Mohammad; Vishwanathan, Venkatasubramanian; Hafiz, Hasnain; Bansil, Arun (AIP Publishing, 2024)X-ray Compton scattering experiments along with parallel first-principles computations were carried out on LiNiO2 to understand the effects of W doping on this cathode material for Li-ion batteries. By employing high-energy ... -
Effects of Lithium Source and Content on the Properties of Li-Rich Layered Oxide Cathode Materials
Wang, Yufan; Hietaniemi, Marianna; Välikangas, Juho; Hu, Tao; Tynjälä, Pekka; Lassi, Ulla (MDPI, 2023)Lithium-rich layered oxide (LLO) are considered high-capacity cathode materials for next-generation lithium-ion batteries. In this study, LLO cathode materials were synthesized via the hydroxide coprecipitation method ... -
Effect of Secondary Heat Treatment after a Washing on the Electrochemical Performance of Co-Free LiNi0.975Al0.025O2 Cathodes for Li-Ion Batteries
Välikangas, Juho; Laine, Petteri; Hu, Tao; Tynjälä, Pekka; Selent, Marcin; Molaiyan, Palanivel; Jürgen, Kahr; Lassi, Ulla (Wiley-VCH Verlag, 2024)The steadily growing electric vehicle market is a driving force in low-cost, high-energy-density lithium-ion battery development. To meet this demand, LiNi0.975Al0.025O2 (LNA), a high-energy-density and cobalt-free cathode ... -
Compton scattering study of strong orbital delocalization in a LiNiO2 cathode
Kothalawala, Veenavee Nipunika; Suzuki, Kosuke; Nokelainen, Johannes; Hyvönen, Arttu; Makkonen, Ilja; Barbiellini, Bernardo; Hafiz, Hasnain; Tynjälä, Pekka; Laine, Petteri; Välikangas, Juho; Hu, Tao; Lassi, Ulla; Takano, Kodai; Tsuji, Naruki; Amada, Yosuke; Devi, Assa Aravindh Sasikala; Alatalo, Matti; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun (American Physical Society (APS), 2024)Cobalt is used in Li-ion batteries, but it is expensive and could be replaced by nickel to deliver better performance at a lower cost. With this motivation, we discuss how the character of redox orbitals of LiNiO2 can be ...