Effect of Secondary Heat Treatment after a Washing on the Electrochemical Performance of Co-Free LiNi0.975Al0.025O2 Cathodes for Li-Ion Batteries
Välikangas, J., Laine, P., Hu, T., Tynjälä, P., Selent, M., Molaiyan, P., Jürgen, K., & Lassi, U. (2024). Effect of Secondary Heat Treatment after a Washing on the Electrochemical Performance of Co-Free LiNi0.975Al0.025O2 Cathodes for Li-Ion Batteries. Small, 20(4), Article 2305349. https://doi.org/10.1002/smll.202305349
Published in
SmallAuthors
Hu, Tao |
Date
2024Copyright
© 2023 The Authors. Small published by Wiley-VCH GmbH
The steadily growing electric vehicle market is a driving force in low-cost, high-energy-density lithium-ion battery development. To meet this demand, LiNi0.975Al0.025O2 (LNA), a high-energy-density and cobalt-free cathode material, has been developed using a low-cost and efficient co-precipitation and lithiation process. This article explores how further processing (i.e., washing residual lithium from the secondary particle surface and applying a secondary heat treatment at 650 °C) changes the chemical environment of the surface and the electrochemical performance of the LNA cathode material. After washing, a nonconductive nickel oxide (NiO) phase is formed on the surface, decreasing the initial capacity in electrochemical tests, and suppressing high-voltage (H2) to (H3) phase transition results in enhanced cycle properties. Furthermore, the secondary heat treatment re-lithiates surface NiO back to LNAand increases the initial capacity with enhanced cycle properties. Electrochemical tests are performed with the cells without tap charge to suppress the H2 to H3 phase transition. Results reveal that avoiding charging cells at a high voltage for a long time dramatically improves LNA's cycle life. In addition, the gas analysis tests performed during charge and discharge to reveal how the amount of residual lithium compounds on the surface affects gas formation are studied.
...
Publisher
Wiley-VCH VerlagISSN Search the Publication Forum
1613-6810Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/184911489
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the financial support of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology. This research was funded by Business Finland, grant number (University of Oulu, BATCircle2.0, Dnro 44612/31/2020).License
Related items
Showing items with similar title or keywords.
-
Synergistic effects of low-level magnesium and chromium doping on the electrochemical performance of LiNiO2 cathodes
Laine, Petteri; Välikangas, Juho; Kauppinen, Toni; Hu, Tao; Wang, Shubo; King, Graham; Singh, Harishchandra; Tynjälä, Pekka; Lassi, Ulla (Springer, 2024)LiNiO2 cathode materials with magnesium and chromium doping were prepared using a simple low - cost and efficient co - precipitation and lithiation procedure. During this procedure, both magnesium and chromium form a ... -
ZSM-5 Coating for Enhancing the Performance of Ni-Rich Li[Ni0.88Co0.09Mn0.03]O2 Cathodes in Lithium-Ion Batteries
Rostami, Hossein; Mehdipour, Parisa; Hu, Tao; Välikangas, Juho; Kauppinen, Toni; Laine, Petteri; Lassi, Ulla; Sliz, Rafal; Tynjälä, Pekka (American Chemical Society (ACS), 2024)This work presents the electrochemical performance of Ni-rich Li[Ni0.88Co0.09Mn0.03]O2 (LNCM-88) synthesized by using pure and recycled MeSO4 solutions and then surface-coated with Zeolite Socony Mobil-5 (ZSM-5). X-ray ... -
Effect of high temperature thermal treatment on the electrochemical performance of natural flake graphite
Lähde, Anna; Välikangas, Juho; Meščeriakovas, Arūnas; Karhunen, Tommi; Meščeriakovė, Sara-Maaria; Sippula, Olli; Leinonen, Seppo; Lassi, Ulla; Jokiniemi, Jorma (Springer, 2024)Natural graphite is currently considered as a critical raw material in EU. The demand for graphite is still increasing as it is commonly used in the anodes of the Li-ion batteries (LIBs). The total graphite content for ... -
Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)2 : effect of magnesium doping and washing on the battery cell performance
Laine, Petteri; Hietaniemi, Marianna; Välikangas, Juho; Kauppinen, Toni; Tynjälä, Pekka; Hu, Tao; Wang, Shubo; Singh, Harishchandra; Lassi, Ulla (Royal Society of Chemistry, 2023)Co-precipitation of Ni0.8Co0.1Mn0.1(OH)2 (NCM811) and Mg-doped (0.25 wt% and 0.5 wt%) NCM811 precursors is carried out from concentrated metal sulphate solutions. In this paper, the aim is to study the role of magnesium ... -
Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries
Molaiyan, Palanivel; Välikangas, Juho; Sliz, Rafal; Ramteke, D. D.; Hu, Tao; Paolella, Andrea; Fabritius, Tapio; Lassi, Ulla (Wiley-VCH Verlag, 2024)LiFePO4 (LFP) is widely used as cathode material for its low cost, high safety, and good thermal properties. It is one of the most exploited cathode materials for commercial Li-ion batteries (LIBs). Herein, we present a ...