Observation of an Alice ring in a Bose–Einstein condensate
Blinova, A., Zamora-Zamora, R., Ollikainen, T., Kivioja, M., Möttönen, M., & Hall, D. S. (2023). Observation of an Alice ring in a Bose–Einstein condensate. Nature Communications, 14, Article 5100. https://doi.org/10.1038/s41467-023-40710-2
Julkaistu sarjassa
Nature CommunicationsTekijät
Päivämäärä
2023Oppiaine
Computing, Information Technology and MathematicsLaskennallinen tiedeComputing, Information Technology and MathematicsComputational ScienceTekijänoikeudet
© 2023 the Authors
Monopoles and vortices are fundamental topological excitations that appear in physical systems spanning enormous scales of size and energy, from the vastness of the early universe to tiny laboratory droplets of nematic liquid crystals and ultracold gases. Although the topologies of vortices and monopoles are distinct from one another, under certain circumstances a monopole can spontaneously and continuously deform into a vortex ring with the curious property that monopoles passing through it are converted into anti-monopoles. However, the observation of such Alice rings has remained a major challenge, due to the scarcity of experimentally accessible monopoles in continuous fields. Here, we present experimental evidence of an Alice ring resulting from the decay of a topological monopole defect in a dilute gaseous 87Rb Bose–Einstein condensate. Our results, in agreement with detailed first-principles simulations, provide an unprecedented opportunity to explore the unique features of a composite excitation that combines the topological features of both a monopole and a vortex ring.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2041-1723Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184555895
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We acknowledge financial support from the National Science Foundation through Grant Nos. PHY–1806318 and PHY–2207631 (D.S.H.), and from the Academy of Finland through its Centre of Excellence in Quantum Technology Grant No. 336810 (M.M.).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Applications of light-matter interaction in nanosciences
Hakala, Tommi (University of Jyväskylä, 2009)In this thesis, light matter interaction in nanoscale has been studied from various aspects. The interaction between surface plasmon polaritons (SPPs) and optically active organic molecules (Rhodamine 6G, Sulforhodamine ... -
Three-dimensional skyrmions in spin-2 Bose–Einstein condensates
Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko (IOP Publishing; Deutsche Physikalische Gesellschaft, 2018)We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the ... -
Counterdiabatic vortex pump in spinor Bose-Einstein condensates
Ollikainen, T.; Masuda, S.; Möttönen, Mikko; Nakahara, M. (American Physical Society, 2017)Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor BoseEinstein condensates of alkali-metal atoms. It was recently shown that counterdiabatic quantum control may accelerate ... -
Three-dimensional splitting dynamics of giant vortices in Bose-Einstein condensates
Räbinä, Jukka; Kuopanportti, Pekko; Kivioja, Markus; Möttönen, Mikko; Rossi, Tuomo (American Physical Society, 2018)We study the splitting dynamics of giant vortices in dilute Bose-Einstein condensates by numerically integrating the three-dimensional Gross-Pitaevskii equation in time. By taking advantage of tetrahedral tiling in the ... -
Synthetic electromagnetic knot in a three-dimensional skyrmion
Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S. (American Association for the Advancement of Science, 2018)Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.