Synthetic electromagnetic knot in a three-dimensional skyrmion
Abstract
Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system.
Main Authors
Format
Articles
Research article
Published
2018
Series
Subjects
Publication in research information system
Publisher
American Association for the Advancement of Science
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201803091688Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
2375-2548
DOI
https://doi.org/10.1126/sciadv.aao3820
Language
English
Published in
Science Advances
Citation
- Lee, W., Gheorghe, A. H., Tiurev, K., Ollikainen, T., Möttönen, M., & Hall, D. S. (2018). Synthetic electromagnetic knot in a three-dimensional skyrmion. Science Advances, 4(3), Article eaao3820. https://doi.org/10.1126/sciadv.aao3820
Copyright© 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open access article distributed under the terms of the Creative Commons License.