Näytä suppeat kuvailutiedot

dc.contributor.authorVäänänen, Olli
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2023-08-30T10:35:40Z
dc.date.available2023-08-30T10:35:40Z
dc.date.issued2023
dc.identifier.citationVäänänen, O., & Hämäläinen, T. (2023). Linearity-based Sensor Data Online Compression Methods for Environmental Applications. In <i>CIoT 2023 : Proceedings of the 6th Conference on Cloud and Internet of Things</i> (pp. 149-156). IEEE. <a href="https://doi.org/10.1109/CIoT57267.2023.10084892" target="_blank">https://doi.org/10.1109/CIoT57267.2023.10084892</a>
dc.identifier.otherCONVID_182819052
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88805
dc.description.abstractEnvironmental monitoring is a typical Internet of Things (IoT) application. Environmental monitoring plays a significant role, for example, in smart farming and smart city applications. Environmental magnitudes are usually measured using wireless sensor nodes, which are often battery-powered, and the number of sensing nodes can be large. One effective method for reducing the energy consumption of a sensor node is to use data compression to reduce the amount of data required for transmission via a wireless connection. Compressing the sensor data means fewer transmission periods, and thus, lower energy consumption. Compression methods should be effective for compressing environmental magnitudes and be computationally light to be suitable for constrained sensor nodes. A compression algorithm should be able to compress an online data stream. In this paper, we review some compression algorithms suitable for environmental monitoring and present two new versions of those algorithms. The algorithms were evaluated, tested, and compared. The main parameters used for the comparisons were compression ratio, root mean square error, and inherent latency. The simulation results obtained using real datasets demonstrate that simple linearity-based compression algorithms are effective and suitable for compressing environmental data. Two new compression algorithm versions proved to be effective for compressing sensor data with reasonable compression quality and predictable inherent latency.en
dc.format.extent246
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofCIoT 2023 : Proceedings of the 6th Conference on Cloud and Internet of Things
dc.rightsIn Copyright
dc.subject.othercompression algorithm
dc.subject.otherdata compression
dc.subject.otheredge computing
dc.subject.otherInternet of Things
dc.subject.othersensor data
dc.titleLinearity-based Sensor Data Online Compression Methods for Environmental Applications
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202308304842
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn979-8-3503-9670-6
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange149-156
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 IEEE
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceConference on Cloud and Internet of Things
dc.subject.ysosensoriverkot
dc.subject.ysolangaton tiedonsiirto
dc.subject.ysoalgoritmit
dc.subject.ysoesineiden internet
dc.subject.ysoreunalaskenta
dc.subject.ysotiedonpakkaus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24338
jyx.subject.urihttp://www.yso.fi/onto/yso/p5445
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p27206
jyx.subject.urihttp://www.yso.fi/onto/yso/p39139
jyx.subject.urihttp://www.yso.fi/onto/yso/p38702
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/CIoT57267.2023.10084892
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright