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Abstract— Environmental monitoring is a typical Internet of 
Things (IoT) application. Environmental monitoring plays a 
significant role, for example, in smart farming and smart city 
applications. Environmental magnitudes are usually measured 
using wireless sensor nodes, which are often battery-powered, 
and the number of sensing nodes can be large. One effective 
method for reducing the energy consumption of a sensor node is 
to use data compression to reduce the amount of data required 
for transmission via a wireless connection. Compressing the 
sensor data means fewer transmission periods, and thus, lower 
energy consumption. Compression methods should be effective 
for compressing environmental magnitudes and be 
computationally light to be suitable for constrained sensor 
nodes. A compression algorithm should be able to compress an 
online data stream. In this paper, we review some compression 
algorithms suitable for environmental monitoring and present 
two new versions of those algorithms. The algorithms were 
evaluated, tested, and compared. The main parameters used for 
the comparisons were compression ratio, root mean square 
error, and inherent latency. The simulation results obtained 
using real datasets demonstrate that simple linearity-based 
compression algorithms are effective and suitable for 
compressing environmental data. Two new compression 
algorithm versions proved to be effective for compressing sensor 
data with reasonable compression quality and predictable 
inherent latency. 

Keywords—compression algorithm, data compression, edge 
computing, Internet of Things, sensor data 

I. INTRODUCTION 
In environmental monitoring the wireless sensor nodes can 

be located in wide area and the number of nodes can be large. 
Wireless sensor nodes are often battery powered and replacing 
empty batteries can be costly, as the nodes may be located in 
a wide area and thus require manpower to complete the 
replacement. Thus, minimizing the energy consumption and 
lengthening the lifetime of the sensor node can be a cost-
effective solution. Compressing the sensor data stream in 
online mode can reduce the transmission periods needed via 
wireless connection. Wireless transmission is known to be the 
most energy consuming operation in wireless sensor node. 
Between sensing and transmission phases the node can be in 
sleep mode. 

In this paper, some basic linearity-based compression 
algorithms are presented, and two new versions are developed 
and evaluated. The algorithms are compared to each other by 
compression ratio, root mean square error and algorithm 
inherent latency. The remainder of this paper is organized as 
follows: present algorithms are presented in Section II. New 
algorithm versions are presented in Section III. Compression 
algorithms inherent latency considerations are in Section IV. 
Algorithms’ ability to compress environmental datasets is in 
Section V. Section VI is the summary of the results and finally 
section VII presents the conclusions. 

II. LINEARITY-BASED TEMPORAL COMPRESSION 
METHODS FOR SENSOR DATA 

A. Linear Regression based Temporal Compression 
Linear Regression based Temporal Compression 

(LRbTC) algorithm is based on basic linear regression and it 
is designed to compress the sensor data in online mode. Thus, 
the dataset is not already available, but as a function of time, 
the new data values come in sequence with constant 
frequency, and the LRbTC algorithm compresses the data 
value by value [1]. The algorithm waits until the first N 
measurement values are available and then the regression line 
described by the N values is calculated. These N values are 
expected to predict the future values of the sensor data. If the 
data behave linearly, then the regression line can predict the 
consecutive measurement values with a certain error bound (ε) 
allowed. N has a minimum of three values, but four and five 
values were also tested in [1]. 

Calculating the linear regression of N values yields the 
linear line that best fits the N values used. The calculation of 
the regression line is based on the least-squares method, which 
minimizes the sum of squares of the deviation between data 
points. After calculating the regression line of the first N 
measured values, the algorithm stores and/or sends the starting 
point of the regression line. The inherent latency of the 
algorithm is (N-1)Δt at this point when the regression line is 
calculated. Then when a new measured value is achieved after 
one measurement interval (Δt), the algorithm compares the 
value to the regression line value at that timestamp. If the 
value is within one error bound from the line, the algorithm 
waits for the next measured value and makes a new 
comparison. When the new measured value falls off from the 
regression line prediction (differs more than one error bound 
from the line), the algorithm stores and/or sends the linear 
regression line value in one timestamp before (last timestamp 
when the measured value was still within one error bound 
from the line) as an end point of the linear segment. Then the 
algorithm waits for N-1 new measured values (because one 
value is already available; the one that was in more than one 
error-bound distance from the line and ended the linear 
segment). After calculating the new regression line, the 
algorithm stores and/or sends the new regression line starting 
point. 

The weakness of this basic form of LRbTC is the 
possibility that the values used to calculate the regression line 
may differ more than one error bound (ε) from the regression 
line. Thus, the values derived from the compressed dataset 
may differ more than one error bound from the original values 
and therefore the error bound requirement is not guaranteed 
[1]. A modified version was developed to solve the 
aforementioned weakness in the basic version. The modified 
LRbTC (M-LRbTC) is analogous to LRbTC, except that the 
comparison between the raw values and regression line is also 
made for the values used to calculate the regression line [1]. If 



the difference between the calculated regression line and the 
raw value or values is larger than the error bound, then the first 
two raw values are retained (stored/sent), and a new regression 
line is calculated when the next two new values are available. 
The algorithm works if N = 3 or more [1],[2]. 

The output of the algorithm can be presented as a 
compressed dataset, M-LRbTC(S) = <(c1, τ1), (c2, τ2),…, (ck, 
τk)>. The compressed data values (ci, τi) are either the starting 
points or end points of the linear segments, or the raw data 
values if the difference has been too big between the line and 
the raw values that were used to calculate the line. 

One drawback of M-LRbTC (and in basic LRbTC) is that 
two data pairs are required for each linear segment; starting 
point and end point. Another drawback of this algorithm is the 
inherent latency. Latency is predicted when the new 
regression line is calculated, and it is determined by N. After 
the regression line is calculated, the latency is not known and 
is not predictable. The better the regression line predicts future 
values, the longer is the latency. The drawback of 
unpredictable latency can be overcome by sending the 
regression line parameters a (slope) and b (base) with the line 
starting point timestamp. Thus, in this case, the compressed 
data can be represented as LRbTC(S) = 
<(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),…,(ak-1,bk-1,τk-1),(ck,τk)>. The 
latency in this version is the N–1 measurement intervals when 
calculating the regression line. When the line parameters are 
sent, the receiver knows that the values follow the line with 
one measurement interval latency until the line-end 
parameters (ci and τi) are received [2]. 

B. Real-Time Linear Regression Based Temporal 
Compression 
RT-LRbTC was presented in [2] as a modification of M-

LRbTC to achieve a predictable and shorter inherent latency. 
RT-LRbTC uses already available sensor values to calculate a 
new regression line. Thus, the inherent latency is only one 
measurement interval, Δt. A flowchart of the RT-LRbTC is 
presented in Fig. 1. Initially, the algorithm works as an M-
LRbTC, and the inherent latency is N–1 measurement 
intervals long, which is (N-1)Δt. In step 6, the algorithm stores 
and/or sends the regression line parameters and the timestamp 
of the regression line starting point instead of the line starting 
point value. In step 7, when the algorithm is in the linear 
section, the inherent latency is one measurement interval (Δt). 
If the difference in step 8 is larger than the error bound 
allowed, the new regression line is calculated in step 9, but the 
line is calculated using the already available values. The 
compressed dataset is presented as RT-LRbTC(S) = <(a1,b1,τ1), 
(a2,b2,τ2),…, (ak,bk,τk)>, where ai and bi are the regression line 
parameters and τi is the line beginning timestamp. When the 
new line parameters with the timestamp are received, it is 
known that the previous line ended one measurement interval 
earlier. Thus, the inherent latency of the algorithm was 
described by the measurement frequency [2]. 

The compression efficiency is dependent on the data 
characteristics, and in most cases, RT-LRbTC has a lower 
inherent compression ratio (CR) than M-LRbTC [2]. As RT-
LRbTC generally has a lower CR, it means that there are more 
linear regression lines after compression with RT-LRbTC 
than with M-LRbTC. An advantage of RT-LRbTC is that the 
line parameters must be sent only once for each linear section, 
thus resulting in a better compression ratio compared to M-
LRbTC [2]. In the basic version of M-LRbTC, the starting and 

endpoint values with timestamps need to be sent for each 
linear segment. RT-LRbTC benefits from the fact that, 
compared to (N-1)Δt latency with M-LRbTC, there is no 
inherent latency when the new regression line is calculated. 

Fig. 1. RT-LRbTC flowchart 

C. Lightweight Temporal Compression 
LTC is a well-known and simple compression algorithm. 

It was first presented in [3], but a similar algorithm, called Fan, 
was actually presented before in [4] for electrocardiogram 
(ECG) data. LTC is a very effective compression algorithm, 
especially for environmental data that behave rather linearly 
when the observation time window is short. The compression 
ratio depends on the data characteristics and error bound used. 
LTC can achieve a compression ratio as high as 20 when 
compressing the environmental temperature data with a 10-
minute measurement interval and 1.0 °C error bound [1]. 

The LTC has an unpredictable latency and is dependent on 
each linear section length. Thus, the higher the CR, the longer 
the latency. If the data behave very linearly, a long latency is 
derived. When the new linear segment starts, the starting point 
is known, but the direction of the following values remains 
unknown until the linear segment ends, and the end point is 
stored in the compressed dataset. Due to unpredictable 
latency, LTC is not suited for real-time applications. In this 
study, LTC has been used as a comparison for the other 
algorithms. 

Some slight variations of the original LTC algorithm have 
been developed. In [5], a modification of the LTC algorithm 
was used. Other variations include Adaptive Lightweight 
Temporal Compression [6], Refined Lightweight Temporal 
Compression (RLTC) [7], multidimensional extension of the 
LTC method [8], Direct Lightweight Temporal Compression 
(DLTC) [9] and DFan [10]. These modified versions were 
developed either to minimize the data reconstruction error or 
improve the compression efficiency. 

 



III. NEW VERSIONS OF THE RT-LRBTC ALGORITHM 
In this study, two new versions of the RT-LRbTC 

algorithm were developed. One variation of the basic RT-
LRbTC is the RT-LRbTC with 2Δt inherent latency in the new 
regression line calculation (RT-LRbTC-2Δt). This version is 
the same as the basic RT-LRbTC (with N = 3), but the values 
used to calculate the new regression line are the last point in 
the previous linear section, the first value that fell off from the 
previous section, and one new measurement value. The need 
to wait for one new value adds the inherent latency to 2Δt 
when the information of the previous line ends, and new line 
parameters are obtained. In Fig. 1, this means that in step 9, 
there is a need to wait for one measurement interval and then 
calculate the new regression line from the last three values. 
This new version is a compromise between M-LRbTC and 
RT-LRbTC; having the inherent latency between those two 
algorithms. 

Another variation of the basic RT-LRbTC and RT-
LRbTC-2Δt is the use of weighted linear regression instead of 
ordinary linear regression. This version of the algorithm is 
called RT-WLRbTC (Real-Time Weighted Linear 
Regression-based Temporal Compression) with 2Δt inherent 
latency (RT-WLRbTC-2Δt). Weighted linear regression (or 
weighted least-squares, WLS) is used in statistics and data 
analysis instead of simple linear regression when the variation 
in the samples (values) is not constant. This heterogeneous 
nature of the values can be addressed by WLS using 
heterogeneous weights wi in the normal linear regression 
equations [11]. The sum of squares of the deviation with 
weights is [12]: 

  𝑆𝑆𝑤𝑤 = ∑ 𝑤𝑤𝑖𝑖[𝑦𝑦𝑖𝑖 − (𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏)]2𝑛𝑛
𝑖𝑖=1   (1) 

The WLS estimates of a and b (line parameters) were 
obtained by minimizing (1). In this study, the idea of WLS is 
utilized as some of the samples are used more than once while 
calculating the linear regression to give more weight to a 
specific individual value (single values used twice means 
double weight). RT-WLRbTC-2Δt is similar to RT-LRbTC-
2Δt, except that the last value used to calculate the linear 
regression line is used twice, thus having a weight value of 2 
compared to 1 for the other two values. Hence, the 
computational complexity is similar to that of the M-LRbTC 
with N = 4. The main idea behind using this type of weighted 
linear regression is that when the linear section ends and the 
new regression line is calculated, it is expected that the 
direction of the values is changing. Thus, the latest value is 
expected to predict future values better than other values used 
to calculate the regression line, and thus the latest value has a 
larger effect on the linear regression line calculation. Different 
versions of weighted linear regression can be developed and 
used; however, only this one example was tested in this study. 

IV. TEMPORAL COMPRESSION METHODS’ INHERENT 
LATENCY 

In Table I, all the presented methods are compared in the 
order of the algorithm’s inherent latency. This comparison 
does not consider the latency caused by the computational 
time. Because the measurement interval in typical 
environmental applications is rather long (minutes or even 
hours in some cases), the time needed for calculations is 
negligible, even with the most constrained end devices. 

LTC and M-LRbTC (basic version) are not well suited for 
compressing sensor data value by value in the online mode. 
LTC has unpredictable inherent latency, which is dependent 
on how well the values fit in the linear section. When the linear 
section ends, the endpoint and the new linear section starting 
point are at the same point. That information is achieved in 
one measurement interval after the linear section ends. The 
basic version of the M-LRbTC has an inherent latency of (N-
1)Δt in the beginning, when the algorithm waits until there are 
N measurement values to be used to calculate the regression 
line. The starting point line value is stored and/or sent, but it 
is not known in which direction the values are moving since 
this until the line ends and the end point value is stored and/or 
sent. If the linear regression line parameters are sent, then the 
inherent latency is constant Δt in the linear section. Only M-
LRbTCb (Table I) and the three RT-LRbTC-based algorithms 
have fixed and predictable latencies. Of the presented 
algorithms, RT-LRbTC has the shortest overall latency, Δt, in 
the linear section, and no latency in calculating a new line. The 
new versions have double inherent latency (2Δt) and no 
latency in calculating a new regression line.  

V. LINEARITY-BASED METHODS’ COMPRESSION 
QUALITY AND ABILITY TO COMPRESS ENVIRONMENTAL 

DATASETS 
It was demonstrated in [13] that the average absolute 

change between consecutive measurements (AC) can be used 
to predict the selected linearity-based algorithm’s ability to 
compress datasets (compression ratio, CR). AC is defined as: 

  𝐴𝐴𝐴𝐴 = ∑ |𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖|
𝑛𝑛−1
𝑖𝑖=1

𝑛𝑛−1
   (2) 

Additionally, the standard deviation (SD) of the change 
between consecutive measurements can also be used to predict 
the CR, but the AC provides a better estimation [13]. SD is 
defined as (3): 

 𝑆𝑆𝑆𝑆 = �∑ �(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)−(𝑥𝑥𝚤𝚤+1−𝑥𝑥𝚤𝚤������������)�
2𝑛𝑛−1

𝑖𝑖=1
𝑛𝑛−2

   (3) 

where, 

 (𝑥𝑥𝚤𝚤+1 − 𝑥𝑥𝚤𝚤�����������) = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1    (4)

TABLE I.  COMPRESSION ALGORITHMS’ LATENCIES IN DIFFERENT PHASES OF COMPRESSION 

Phase of the 
Compression 

Compression Algorithm 

LTC M-LRbTCa M-LRbTCb RT-LRbTC RT-LRbTC-2Δt RT-WLRbTC-2Δt 

At the beginning 0 (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt 

In linear section Length of the 
linear section 

Length of the 
linear section Δt Δt 2Δt 2Δt 

Calculating new line NA (N-1)Δt (N-1)Δt 0 0 0 
aM-LRbTC: The linear regression line start and endpoint values are sent. 
bM-LRbTC: The linear regression line parameters are sent with the starting timestamp. The endpoint of the linear line is sent when the first value falls off from the linear segment. 
 



The suitability of a compression algorithm depends on the 
characteristics of the sensor data. Many environmental 
magnitudes are quasi-linear in a short time window, and some 
compression algorithms are more suitable and effective for 
this type of linearly behaving data than for other types of data. 
In this study, the AC and SD values of the datasets were used 
to compare the datasets’ characteristics and to estimate the 
compression algorithms’ ability to compress those datasets 
effectively. 

The common parameters used to compare different 
compression algorithms are the compression ratio (CR) and 
the root mean square error (RMSE). The compression ratio is 
calculated as CR = (original data)/(compressed data) and the 
root mean square error [14]: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1    (5) 

where vi is the raw data value and ci is the corresponding 
value derived from the compressed dataset. The compression 
ratio indicates how effectively the algorithm reduces the size 
of the original data and is most widely used to express the 
efficiency of the compression algorithm. The RMSE indicates 
the compression quality. Because the methods presented in 
this paper are lossy, the reconstructed data differ from the 
original data. Thus, some information is lost. The RMSE 
provides information about how much the data reconstructed 
from the compressed data differs from the original data. The 
smaller the RMSE value, the smaller is the deviation from the 
original data. 

A. The Selected Compression Algorithms’ Efficiency to 
Compress Real Environmental Datasets 
LTC, M-LRbTC, and three versions of RT-LRbTC 

algorithms were tested with real datasets and compared with 
each other. All tested algorithms are suitable for constrained 
IoT devices. In [15] and [16], LTC and RT-LRbTC (with N 
values 3 and 4) were implemented on a LoRa sensor node and 
no significant energy consumption from the algorithm 
calculations was discovered. It was discovered that using these 
lossy compression algorithms led to significant reduction on 
energy consumption and thus it can be effective solution for 
lengthening the battery powered sensor node lifetime. The 
energy saving was due to reduction of the wireless 
transmitting periods [15], [16].  

In this study, the M-LRbTC algorithm was tested using N 
values of 3, 4, and 5. The RT-LRbTC algorithm was tested 
with the original version and two newly developed versions: 
RT-LRbTC-2Δt and RT-WLRbTC-2Δt. All algorithms were 
programmed and tested using MATLAB. The datasets were 
already available, and thus, this situation does not correspond 
to the situation for compressing the real-time sensor data 
stream. This testing situation demonstrates how the algorithm 
would have compressed the data when the dataset was 
collected. As the temperature at the same geological location 
behaves rather similarly year by year, this testing indicates 
how the algorithm could possibly compress the data in that 
situation. Similar behavior at certain geological locations for 
other environmental magnitudes is also expected. 

The environmental magnitudes were temperature, air 
pressure and wind speed. The datasets used were obtained 
from the Finnish Meteorological Institute’s open data service 
[17]. The datasets tested were Salla Naruska measurement 
station data and Hanko Tulliniemi measurement station data. 

All datasets were for the full year 2019 with 10-minute 
measurement intervals. The temperature was measured in 
degrees Celsius with 0.1 degrees resolution, air pressure was 
measured in hPa with 0.1 hPa resolution and wind speed was 
measured in 10-minute average value with 0.1 m/s resolution. 

The Salla Naruska measurement station is in the eastern 
part of Finnish Lapland. It is one of the coldest locations in 
Finland. The Hanko Tulliniemi measurement station is in the 
southernmost part of Finland, 100 m from the sea. These two 
locations have very different climates. The Salla Naruska 
dataset was also used in [2] but the Hanko Tulliniemi dataset 
is a new experiment. In [2] LTC, M-LRbTC, and RT-LRbTC 
compression ratios with different error bound values were 
tested using the Salla Naruska dataset (temperature, air 
pressure, and wind speed). In this study, the same compression 
ratio simulations for the Salla Naruska datasets were repeated, 
but the RT-LRbTC algorithm’s MATLAB version was further 
developed to give the CR value calculated as only line 
parameters are needed for each linear section and possible 
single values (not included in any linear segment) were taken 
into account. In [2] the same situation was achieved by 
doubling the CR values achieved from the compressed 
datasets, which included the start and end points of the linear 
segments. The method in [2] gives the same values for CR 
when the CR is high but gives erroneous results if the 
compressed dataset also includes single values that do not 
belong to linear segments. In this study, the RMSE values for 
each algorithm were calculated using different error-bound 
values. In addition, the CR and RMSE values were compared, 
and two new algorithms were tested for each environmental 
dataset.   

1) Temperature Datasets 
The Salla Naruska dataset contains 52 463 values and the 

Hanko Tulliniemi dataset 51 961 measurement values with 
10-minute measurement intervals. For the full year, the dataset 
should contain 52 560 values but both datasets have some 
periods with missing values. The individual missing values 
and short periods with missing values in the original datasets 
were linearly interpolated. Longer periods with missing values 
were removed from the dataset. The temperature values in the 
Salla Naruska dataset varied between -37.2 °C and +30 °C. 
The temperature values in the Hanko Tulliniemi dataset varied 
between -12.3 °C and +27.6 °C. 

Table II presents a comparison between these two 
temperature datasets. Both the AC and SD values were higher 
for the Salla Naruska temperature dataset than for the Hanko 
Tulliniemi dataset. It indicates a lower compression ratio for 
Salla Naruska dataset. 

TABLE II.  TEMPERATURE DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.2077 0.1282 

Standard deviation (SD) 0.3473 0.2221 

 

The results achieved in [13] can be used to estimate the 
compression ratios with error bound of 0.5 °C for the LTC and 
M-LRbTC algorithms when the AC and SD values are known. 
With AC values from Table II the estimation gives CR = 10.4 
(Salla Naruska dataset) and CR = 15.8 (Hanko Tulliniemi 
dataset) for LTC when the error bound is 0.5 °C. The real CR 



values achieved in this paper were 10.2 and 14.1 respectively. 
For M-LRbTC (N = 3) the estimation gives CR values 4.0 and 
5.8 compared to the results achieved here which are 4.0 and 
5.4 respectively. The estimations from [13] are close to the 
real compression ratios achieved in this study. 

Fig. 2 shows the performance results of the different 
compression algorithms. Fig. 2 (a) and (b) show the 
compression ratios as a function of error bound (from 0.1 to 
1.0 degrees Celsius). The LTC has a superior compression 
ratio compared to the linear regression-based algorithms. The 
difference between the different linear-regression-based 
algorithms is not very large. The compression performance 
difference between M-LRbTC N = 3 and N = 4 was slightly 
larger than that between N = 4 and N = 5. RT-LRbTC has the 
lowest compression ratio in terms of linear lines (start and end 
points), but it benefits from the fact that only one transmission 
period is required for each linear line. In Fig. 2 (a) and (b), for 
different RT-LRbTC (RT-LRbTC, RT-LRbTC-2Δt, and RT-
WLRbTC-2Δt) algorithms, the compression ratio values are 
presented as only the line parameters are stored/sent at the 
beginning of each linear line. 

The new variations in RT-LRbTC (RT-LRbTC-2Δt and 
RT-WLRbTC-2Δt) have a slightly better compression 
performance than the basic RT-LRbTC. This can be observed 
in Fig. 2 (a) and (b) for the compression ratio. In general, all 
the tested compression algorithms performed better for the 
Hanko Tulliniemi dataset than for the Salla Naruska dataset, 
as indicated by the AC and SD values in Table II. A typical 
error bound for temperature data in many applications can be 

approximately ± 0.5 degrees Celsius. One possibility to 
choose the error bound is to use the margin of error of the 
temperature sensor, which can be found in the sensor’s data 
sheet [3]. 

In Fig. 2 (c) and (d) the RMSE values with different error 
bounds can be seen.  The LTC has the largest RMSE values, 
which means that the drawback of a better compression ratio 
is lower compression quality. Among linear-regression-based 
methods, the results are similar between them. As RT-LRbTC 
has a higher compression ratio, it also has a lower compression 
quality than the M-LRbTC methods. The advantage of RT-
LRbTC is its shorter latency and moderate compression ratio, 
but its drawback is the larger average reconstruction error after 
compression than that of M-LRbTC. 

The compression quality measurements (RMSE) are 
similar level with all linear regression-based algorithms, as 
can be seen in Fig. 2 (c) and (d). RT-WLRbTC-2Δt does not 
show any better performance than RT-LRbTC-2Δt in any 
measurements for these temperature datasets. In Fig. 2 (e) and 
(f), the RMSE values are compared in terms of the 
compression ratio. In this comparison, the LTC has the best 
performance, even though the previous comparisons in (c) and 
(d) indicate a lower compression quality. The LTC benefits 
from its superior compression ratio compared to the other 
tested methods. 

2) Air Pressure Datasets 
The same algorithms were tested for the air pressure 

datasets. The datasets are listed in Table III. The 
characteristics of both datasets were very similar, indicating

Fig. 2. Compression algorithms’ performance for temperature datasets 

 



very similar behavior for both datasets. There was only a small 
difference between the AC and SD values. The air pressure 
values in the Salla Naruska dataset varied between 967.2 hPa 
and 1039.5 hPa. In Hanko Tulliniemi dataset the values were 
between 970.5 hPa and 1043.1 hPa. 

TABLE III.  AIR PRESSURE DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.0856 0.0836 

Standard deviation (SD) 0.1234 0.1249 

 

In Fig. 3, all the results for compressing the two tested air 
pressure datasets are shown. Both datasets are full-year 
datasets with 10-minute measurement intervals. 

As shown in Fig. 3 (a) and (b), the compression ratios were 
significantly higher than for the temperature data (Fig. 2). 
These are not directly comparable, but as both magnitudes are 
measured with 0.1 (degree and hPa) resolution, the error 
bounds of 0.1 – 1.0 can thus be compared to each other 
sufficiently. In general, the air pressure data changes rather 
slowly; thus, it is well suited for linearity-based compression 
algorithms. The AC and SD values in Table III are 
significantly lower than those for the temperature datasets in 
Table II, thus indicating better compression performance. 
From the results obtained in [13] it is possible to estimate the 
compression ratios for the LTC and M-LRbTC algorithms. 
The data from [13] estimated the compression ratio with 0.5 

hPa error bound for LTC to be 27.9 for the Salla Naruska 
dataset and 28.3 for the Hanko Tulliniemi dataset. The results 
from MATLAB simulations provided CR values 29.6 for the 
Salla Naruska dataset and 29.8 for the Hanko Tulliniemi 
dataset. These results are very close to the estimations. 

The results for RT-LRbTC-2Δt and RT-WLRbTC-2Δt 
were very close to the RT-LRbTC values in terms of the 
compression ratio (Fig. 3 (a) and (b)). All linear regression-
based algorithms are very close to each other in terms of the 
quality metrics (RMSE), as can be seen in Fig. 3 (c) and (d). 
Again, the LTC has a superior compression ratio but also the 
largest average construction error. The difference between the 
various linear regression-based algorithms is small in terms of 
the quality metrics and compression ratio. The three different 
RT-LRbTC algorithms presented the best compression 
performance among the linear regression-based algorithms. In 
Fig. 3 (e) and (f), the RMSE values of the different algorithms 
are compared in terms of compression ratio. The performance 
order between the algorithms is quite similar to that of the 
temperature data, as seen previously. 

3) Wind Speed Datasets 
The two wind speed datasets have different characteristics. 

As the measurement stations are located in very different 
places, one close to the sea and the other in Lapland in the 
lowland, the wind conditions are different. The AC and SD 
values are listed in Table IV. The AC and SD values were 
higher for the Hanko Tulliniemi dataset, which indicates 
lower compression ratios for that dataset. The wind speed was 
measured as 10-minute average values. Otherwise, the wind 
speed is gusty if measured in instantaneous values, and thus, 

Fig. 3. Compression algorithms’ performance for air pressure datasets 

 



it does not exhibit linear behavior. The values in the Salla 
Naruska dataset were 0 m/s - 9.3 m/s. The values in the Hanko 
Tulliniemi dataset were 0 m/s - 21.8 m/s. 

TABLE IV.  WIND SPEED DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.2844 0.4188 

Standard deviation (SD) 0.4125 0.5917 

 

The compression ratios for the Salla Naruska dataset are 
significantly higher than those for the Hanko Tulliniemi 
dataset, as can be seen in Fig. 4 (a) and (b). For example, LTC 
with error bound 0.5 m/s achieves CR = 5.54 for Salla Naruska 
dataset and CR = 3.98 for Hanko Tulliniemi dataset. The 
estimations obtained from the data in [13] provide the 
compression ratio estimations of 5.5 for the Salla Naruska 
dataset and 3.6 for Hanko Tulliniemi dataset for LTC with the 
same error bound. These estimations were close to the actual 
compression ratios achieved. The estimations for M-LRbTC, 
N = 3 give CR = 2.7 for Salla Naruska data and CR = 2.1 for 
Hanko Tulliniemi data. The MATLAB simulation yielded the 
same values. The compression ratios are clearly higher for the 
Salla Naruska dataset than for the Hanko Tulliniemi dataset, 
as indicated by the AC and SD values of the datasets. RT-
LRbTC-2Δt and RT-WLRbTC-2Δt exhibited the higher CR 
values compared with the other linear regression-based 
methods. 

The RMSE results are shown in Fig. 4 (c) and (d). The 
performance results with these quality measurements were at 
the same level for each linear-regression-based method. The 

differences were very limited. LTC has a significantly lower 
compression quality (higher RMSE), as can be seen in Fig. 4 
(c) and (d). The different characteristics of the datasets did not 
appear to affect the quality metrics. The RMSE results were 
very similar for both the datasets. When comparing the RMSE 
values as a function of compression ratio (Fig. 4 (e) and (f)), 
the performances of the different algorithms differ less from 
each other than with temperature and air pressure datasets. 

The new algorithms, RT-LRbTC-2Δt and RT-WLRbTC-
2Δt, showed better overall performance than the other linear 
regression-based algorithms for wind speed datasets. Thus, 
these new algorithms are potential methods for compressing 
wind-speed data if the additional inherent latency is 
acceptable. 

VI. SUMMARY OF THE RESULTS 
LTC had the best compression efficiency for all datasets, 

but at the same time, it had the largest RMSE values with a 
certain error bound. The M-LRbTC algorithm benefits from 
increasing the N value from 3 to 4 or 5; however, it makes the 
algorithm more complex and increases the inherent latency. 
The new versions (RT-LRbTC-2Δt and RT-WLRbTC-2Δt) 
have slightly better compression performance than RT-
LRbTC. These new algorithms have the same benefit as the 
RT-LRbTC in that only one transmitting period is needed for 
each linear segment. The weighted linear regression did not 
improve the compression performance compared with RT-
LRbTC-2Δt. Among the tested algorithms, RT-LRbTC is the 
best algorithm if a short inherent latency is required, as shown 
in Table I. If the predicted latency is required, then different 
versions of RT-LRbTC or M-LRbTC (when regression line 
parameters are sent) are suitable algorithms. LTC has superior 
compression performance, but unpredictable latency; thus, it

Fig. 4. Compression algorithms’ performance for wind speed datasets 

 



is not well suited for online data stream compression or near 
real-time applications. With a certain error bound, the LTC 
had the largest RMSE values, and thus had the lowest 
compression quality. Linear regression-based algorithms have 
very similar RMSE values, and thus have a similar 
performance in terms of compression quality. The two new 
algorithms proved to be suitable for compressing online 
environmental sensor data streams with a predictable but 
slightly longer inherent latency than the original RT-LRbTC. 

VII. CONCLUSIONS 
Different linearity-based sensor data compression 

algorithms were presented, and their efficiency to compress 
different environmental microclimate datasets was tested with 
real datasets. The environmental magnitudes tested were 
temperature, air pressure and wind speed. Algorithms were 
compared using the compression ratio (CR) and quality 
measurements as the root mean square error (RMSE). Inherent 
latency was used as a feature to compare the ability of 
different algorithms to compress data in the online mode. 

The datasets used were real datasets acquired from the 
Finnish Meteorological Institute’s Open Data Service. The 
datasets were used retrospectively and not in the online mode. 
Thus, the dataset characteristics can be used to compare the 
compression results of different compression algorithms. The 
datasets were measurement values from the year 2019, but the 
characteristics of those datasets can be used to predict the 
performance of different algorithms in the future in that 
measurement station and measurement setup. In different 
places (microclimates), different magnitudes have a behavior 
typical for that place. Thus, the available dataset for that 
specific location can be used to predict the characteristics of 
future datasets and thus predict the performance of the 
different algorithms. 

Two new versions of the RT-LRbTC are presented in this 
paper. These new versions were tested and compared with 
other algorithms. LTC has a superior compression ratio 
compared to other methods but as a disadvantage, LTC has 
unpredictable inherent latency. The quality measurements 
demonstrate that the LTC also has the largest reconstruction 
error when a certain error bound is used. The quality 
measurements between the different versions of M-LRbTC 
and RT-LRbTC are very close to each other.  

The new versions of the RT-LRbTC algorithm (RT-
LRbTC-2Δt and RT-WLRbTC-2Δt) present better 
compression ratios than the basic version of the RT-LRbTC, 
but at the cost of a larger inherent latency. In addition, the 
quality measurements are slightly better for the new versions. 
Using weighted linear regression to calculate the regression 
line, weighting the last value used to calculate the line, did not 
yield any better results than the regular linear regression line. 
Thus, it only adds the computational complexity of the 
compression algorithm, without any significant benefits. 

All the presented and tested linearity-based compression 
algorithms are very simple and thus suitable for use in 
constrained wireless sensor nodes to reduce the overall energy 
consumption and extend the battery lifetime. These 
compression methods can significantly reduce the number of 
wireless transmission periods and, consequently, lower the 
energy consumption of the sensor node. 
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