
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Linearity-based Sensor Data Online Compression Methods for Environmental
Applications

© 2023 IEEE

Accepted version (Final draft)

Väänänen, Olli; Hämäläinen, Timo

Väänänen, O., & Hämäläinen, T. (2023). Linearity-based Sensor Data Online Compression
Methods for Environmental Applications. In CIoT 2023 : Proceedings of the 6th Conference on
Cloud and Internet of Things (pp. 149-156). IEEE.
https://doi.org/10.1109/CIoT57267.2023.10084892

2023

Linearity-based Sensor Data Online Compression
Methods for Environmental Applications

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

ORCID: 0000-0002-7211-7668

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

ORCID: 0000-0002-4168-9102

Abstract— Environmental monitoring is a typical Internet of
Things (IoT) application. Environmental monitoring plays a
significant role, for example, in smart farming and smart city
applications. Environmental magnitudes are usually measured
using wireless sensor nodes, which are often battery-powered,
and the number of sensing nodes can be large. One effective
method for reducing the energy consumption of a sensor node is
to use data compression to reduce the amount of data required
for transmission via a wireless connection. Compressing the
sensor data means fewer transmission periods, and thus, lower
energy consumption. Compression methods should be effective
for compressing environmental magnitudes and be
computationally light to be suitable for constrained sensor
nodes. A compression algorithm should be able to compress an
online data stream. In this paper, we review some compression
algorithms suitable for environmental monitoring and present
two new versions of those algorithms. The algorithms were
evaluated, tested, and compared. The main parameters used for
the comparisons were compression ratio, root mean square
error, and inherent latency. The simulation results obtained
using real datasets demonstrate that simple linearity-based
compression algorithms are effective and suitable for
compressing environmental data. Two new compression
algorithm versions proved to be effective for compressing sensor
data with reasonable compression quality and predictable
inherent latency.

Keywords—compression algorithm, data compression, edge
computing, Internet of Things, sensor data

I. INTRODUCTION
In environmental monitoring the wireless sensor nodes can

be located in wide area and the number of nodes can be large.
Wireless sensor nodes are often battery powered and replacing
empty batteries can be costly, as the nodes may be located in
a wide area and thus require manpower to complete the
replacement. Thus, minimizing the energy consumption and
lengthening the lifetime of the sensor node can be a cost-
effective solution. Compressing the sensor data stream in
online mode can reduce the transmission periods needed via
wireless connection. Wireless transmission is known to be the
most energy consuming operation in wireless sensor node.
Between sensing and transmission phases the node can be in
sleep mode.

In this paper, some basic linearity-based compression
algorithms are presented, and two new versions are developed
and evaluated. The algorithms are compared to each other by
compression ratio, root mean square error and algorithm
inherent latency. The remainder of this paper is organized as
follows: present algorithms are presented in Section II. New
algorithm versions are presented in Section III. Compression
algorithms inherent latency considerations are in Section IV.
Algorithms’ ability to compress environmental datasets is in
Section V. Section VI is the summary of the results and finally
section VII presents the conclusions.

II. LINEARITY-BASED TEMPORAL COMPRESSION
METHODS FOR SENSOR DATA

A. Linear Regression based Temporal Compression
Linear Regression based Temporal Compression

(LRbTC) algorithm is based on basic linear regression and it
is designed to compress the sensor data in online mode. Thus,
the dataset is not already available, but as a function of time,
the new data values come in sequence with constant
frequency, and the LRbTC algorithm compresses the data
value by value [1]. The algorithm waits until the first N
measurement values are available and then the regression line
described by the N values is calculated. These N values are
expected to predict the future values of the sensor data. If the
data behave linearly, then the regression line can predict the
consecutive measurement values with a certain error bound (ε)
allowed. N has a minimum of three values, but four and five
values were also tested in [1].

Calculating the linear regression of N values yields the
linear line that best fits the N values used. The calculation of
the regression line is based on the least-squares method, which
minimizes the sum of squares of the deviation between data
points. After calculating the regression line of the first N
measured values, the algorithm stores and/or sends the starting
point of the regression line. The inherent latency of the
algorithm is (N-1)Δt at this point when the regression line is
calculated. Then when a new measured value is achieved after
one measurement interval (Δt), the algorithm compares the
value to the regression line value at that timestamp. If the
value is within one error bound from the line, the algorithm
waits for the next measured value and makes a new
comparison. When the new measured value falls off from the
regression line prediction (differs more than one error bound
from the line), the algorithm stores and/or sends the linear
regression line value in one timestamp before (last timestamp
when the measured value was still within one error bound
from the line) as an end point of the linear segment. Then the
algorithm waits for N-1 new measured values (because one
value is already available; the one that was in more than one
error-bound distance from the line and ended the linear
segment). After calculating the new regression line, the
algorithm stores and/or sends the new regression line starting
point.

The weakness of this basic form of LRbTC is the
possibility that the values used to calculate the regression line
may differ more than one error bound (ε) from the regression
line. Thus, the values derived from the compressed dataset
may differ more than one error bound from the original values
and therefore the error bound requirement is not guaranteed
[1]. A modified version was developed to solve the
aforementioned weakness in the basic version. The modified
LRbTC (M-LRbTC) is analogous to LRbTC, except that the
comparison between the raw values and regression line is also
made for the values used to calculate the regression line [1]. If

the difference between the calculated regression line and the
raw value or values is larger than the error bound, then the first
two raw values are retained (stored/sent), and a new regression
line is calculated when the next two new values are available.
The algorithm works if N = 3 or more [1],[2].

The output of the algorithm can be presented as a
compressed dataset, M-LRbTC(S) = <(c1, τ1), (c2, τ2),…, (ck,
τk)>. The compressed data values (ci, τi) are either the starting
points or end points of the linear segments, or the raw data
values if the difference has been too big between the line and
the raw values that were used to calculate the line.

One drawback of M-LRbTC (and in basic LRbTC) is that
two data pairs are required for each linear segment; starting
point and end point. Another drawback of this algorithm is the
inherent latency. Latency is predicted when the new
regression line is calculated, and it is determined by N. After
the regression line is calculated, the latency is not known and
is not predictable. The better the regression line predicts future
values, the longer is the latency. The drawback of
unpredictable latency can be overcome by sending the
regression line parameters a (slope) and b (base) with the line
starting point timestamp. Thus, in this case, the compressed
data can be represented as LRbTC(S) =
<(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),…,(ak-1,bk-1,τk-1),(ck,τk)>. The
latency in this version is the N–1 measurement intervals when
calculating the regression line. When the line parameters are
sent, the receiver knows that the values follow the line with
one measurement interval latency until the line-end
parameters (ci and τi) are received [2].

B. Real-Time Linear Regression Based Temporal
Compression
RT-LRbTC was presented in [2] as a modification of M-

LRbTC to achieve a predictable and shorter inherent latency.
RT-LRbTC uses already available sensor values to calculate a
new regression line. Thus, the inherent latency is only one
measurement interval, Δt. A flowchart of the RT-LRbTC is
presented in Fig. 1. Initially, the algorithm works as an M-
LRbTC, and the inherent latency is N–1 measurement
intervals long, which is (N-1)Δt. In step 6, the algorithm stores
and/or sends the regression line parameters and the timestamp
of the regression line starting point instead of the line starting
point value. In step 7, when the algorithm is in the linear
section, the inherent latency is one measurement interval (Δt).
If the difference in step 8 is larger than the error bound
allowed, the new regression line is calculated in step 9, but the
line is calculated using the already available values. The
compressed dataset is presented as RT-LRbTC(S) = <(a1,b1,τ1),
(a2,b2,τ2),…, (ak,bk,τk)>, where ai and bi are the regression line
parameters and τi is the line beginning timestamp. When the
new line parameters with the timestamp are received, it is
known that the previous line ended one measurement interval
earlier. Thus, the inherent latency of the algorithm was
described by the measurement frequency [2].

The compression efficiency is dependent on the data
characteristics, and in most cases, RT-LRbTC has a lower
inherent compression ratio (CR) than M-LRbTC [2]. As RT-
LRbTC generally has a lower CR, it means that there are more
linear regression lines after compression with RT-LRbTC
than with M-LRbTC. An advantage of RT-LRbTC is that the
line parameters must be sent only once for each linear section,
thus resulting in a better compression ratio compared to M-
LRbTC [2]. In the basic version of M-LRbTC, the starting and

endpoint values with timestamps need to be sent for each
linear segment. RT-LRbTC benefits from the fact that,
compared to (N-1)Δt latency with M-LRbTC, there is no
inherent latency when the new regression line is calculated.

Fig. 1. RT-LRbTC flowchart

C. Lightweight Temporal Compression
LTC is a well-known and simple compression algorithm.

It was first presented in [3], but a similar algorithm, called Fan,
was actually presented before in [4] for electrocardiogram
(ECG) data. LTC is a very effective compression algorithm,
especially for environmental data that behave rather linearly
when the observation time window is short. The compression
ratio depends on the data characteristics and error bound used.
LTC can achieve a compression ratio as high as 20 when
compressing the environmental temperature data with a 10-
minute measurement interval and 1.0 °C error bound [1].

The LTC has an unpredictable latency and is dependent on
each linear section length. Thus, the higher the CR, the longer
the latency. If the data behave very linearly, a long latency is
derived. When the new linear segment starts, the starting point
is known, but the direction of the following values remains
unknown until the linear segment ends, and the end point is
stored in the compressed dataset. Due to unpredictable
latency, LTC is not suited for real-time applications. In this
study, LTC has been used as a comparison for the other
algorithms.

Some slight variations of the original LTC algorithm have
been developed. In [5], a modification of the LTC algorithm
was used. Other variations include Adaptive Lightweight
Temporal Compression [6], Refined Lightweight Temporal
Compression (RLTC) [7], multidimensional extension of the
LTC method [8], Direct Lightweight Temporal Compression
(DLTC) [9] and DFan [10]. These modified versions were
developed either to minimize the data reconstruction error or
improve the compression efficiency.

III. NEW VERSIONS OF THE RT-LRBTC ALGORITHM
In this study, two new versions of the RT-LRbTC

algorithm were developed. One variation of the basic RT-
LRbTC is the RT-LRbTC with 2Δt inherent latency in the new
regression line calculation (RT-LRbTC-2Δt). This version is
the same as the basic RT-LRbTC (with N = 3), but the values
used to calculate the new regression line are the last point in
the previous linear section, the first value that fell off from the
previous section, and one new measurement value. The need
to wait for one new value adds the inherent latency to 2Δt
when the information of the previous line ends, and new line
parameters are obtained. In Fig. 1, this means that in step 9,
there is a need to wait for one measurement interval and then
calculate the new regression line from the last three values.
This new version is a compromise between M-LRbTC and
RT-LRbTC; having the inherent latency between those two
algorithms.

Another variation of the basic RT-LRbTC and RT-
LRbTC-2Δt is the use of weighted linear regression instead of
ordinary linear regression. This version of the algorithm is
called RT-WLRbTC (Real-Time Weighted Linear
Regression-based Temporal Compression) with 2Δt inherent
latency (RT-WLRbTC-2Δt). Weighted linear regression (or
weighted least-squares, WLS) is used in statistics and data
analysis instead of simple linear regression when the variation
in the samples (values) is not constant. This heterogeneous
nature of the values can be addressed by WLS using
heterogeneous weights wi in the normal linear regression
equations [11]. The sum of squares of the deviation with
weights is [12]:

 𝑆𝑆𝑤𝑤 = ∑ 𝑤𝑤𝑖𝑖[𝑦𝑦𝑖𝑖 − (𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏)]2𝑛𝑛
𝑖𝑖=1 (1)

The WLS estimates of a and b (line parameters) were
obtained by minimizing (1). In this study, the idea of WLS is
utilized as some of the samples are used more than once while
calculating the linear regression to give more weight to a
specific individual value (single values used twice means
double weight). RT-WLRbTC-2Δt is similar to RT-LRbTC-
2Δt, except that the last value used to calculate the linear
regression line is used twice, thus having a weight value of 2
compared to 1 for the other two values. Hence, the
computational complexity is similar to that of the M-LRbTC
with N = 4. The main idea behind using this type of weighted
linear regression is that when the linear section ends and the
new regression line is calculated, it is expected that the
direction of the values is changing. Thus, the latest value is
expected to predict future values better than other values used
to calculate the regression line, and thus the latest value has a
larger effect on the linear regression line calculation. Different
versions of weighted linear regression can be developed and
used; however, only this one example was tested in this study.

IV. TEMPORAL COMPRESSION METHODS’ INHERENT
LATENCY

In Table I, all the presented methods are compared in the
order of the algorithm’s inherent latency. This comparison
does not consider the latency caused by the computational
time. Because the measurement interval in typical
environmental applications is rather long (minutes or even
hours in some cases), the time needed for calculations is
negligible, even with the most constrained end devices.

LTC and M-LRbTC (basic version) are not well suited for
compressing sensor data value by value in the online mode.
LTC has unpredictable inherent latency, which is dependent
on how well the values fit in the linear section. When the linear
section ends, the endpoint and the new linear section starting
point are at the same point. That information is achieved in
one measurement interval after the linear section ends. The
basic version of the M-LRbTC has an inherent latency of (N-
1)Δt in the beginning, when the algorithm waits until there are
N measurement values to be used to calculate the regression
line. The starting point line value is stored and/or sent, but it
is not known in which direction the values are moving since
this until the line ends and the end point value is stored and/or
sent. If the linear regression line parameters are sent, then the
inherent latency is constant Δt in the linear section. Only M-
LRbTCb (Table I) and the three RT-LRbTC-based algorithms
have fixed and predictable latencies. Of the presented
algorithms, RT-LRbTC has the shortest overall latency, Δt, in
the linear section, and no latency in calculating a new line. The
new versions have double inherent latency (2Δt) and no
latency in calculating a new regression line.

V. LINEARITY-BASED METHODS’ COMPRESSION
QUALITY AND ABILITY TO COMPRESS ENVIRONMENTAL

DATASETS
It was demonstrated in [13] that the average absolute

change between consecutive measurements (AC) can be used
to predict the selected linearity-based algorithm’s ability to
compress datasets (compression ratio, CR). AC is defined as:

 𝐴𝐴𝐴𝐴 = ∑ |𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖|
𝑛𝑛−1
𝑖𝑖=1

𝑛𝑛−1
 (2)

Additionally, the standard deviation (SD) of the change
between consecutive measurements can also be used to predict
the CR, but the AC provides a better estimation [13]. SD is
defined as (3):

 𝑆𝑆𝑆𝑆 = �∑ �(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)−(𝑥𝑥𝚤𝚤+1−𝑥𝑥𝚤𝚤������������)�
2𝑛𝑛−1

𝑖𝑖=1
𝑛𝑛−2

 (3)

where,

 (𝑥𝑥𝚤𝚤+1 − 𝑥𝑥𝚤𝚤�����������) = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1 (4)

TABLE I. COMPRESSION ALGORITHMS’ LATENCIES IN DIFFERENT PHASES OF COMPRESSION

Phase of the
Compression

Compression Algorithm

LTC M-LRbTCa M-LRbTCb RT-LRbTC RT-LRbTC-2Δt RT-WLRbTC-2Δt

At the beginning 0 (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt

In linear section Length of the
linear section

Length of the
linear section Δt Δt 2Δt 2Δt

Calculating new line NA (N-1)Δt (N-1)Δt 0 0 0
aM-LRbTC: The linear regression line start and endpoint values are sent.
bM-LRbTC: The linear regression line parameters are sent with the starting timestamp. The endpoint of the linear line is sent when the first value falls off from the linear segment.

The suitability of a compression algorithm depends on the
characteristics of the sensor data. Many environmental
magnitudes are quasi-linear in a short time window, and some
compression algorithms are more suitable and effective for
this type of linearly behaving data than for other types of data.
In this study, the AC and SD values of the datasets were used
to compare the datasets’ characteristics and to estimate the
compression algorithms’ ability to compress those datasets
effectively.

The common parameters used to compare different
compression algorithms are the compression ratio (CR) and
the root mean square error (RMSE). The compression ratio is
calculated as CR = (original data)/(compressed data) and the
root mean square error [14]:

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 (5)

where vi is the raw data value and ci is the corresponding
value derived from the compressed dataset. The compression
ratio indicates how effectively the algorithm reduces the size
of the original data and is most widely used to express the
efficiency of the compression algorithm. The RMSE indicates
the compression quality. Because the methods presented in
this paper are lossy, the reconstructed data differ from the
original data. Thus, some information is lost. The RMSE
provides information about how much the data reconstructed
from the compressed data differs from the original data. The
smaller the RMSE value, the smaller is the deviation from the
original data.

A. The Selected Compression Algorithms’ Efficiency to
Compress Real Environmental Datasets
LTC, M-LRbTC, and three versions of RT-LRbTC

algorithms were tested with real datasets and compared with
each other. All tested algorithms are suitable for constrained
IoT devices. In [15] and [16], LTC and RT-LRbTC (with N
values 3 and 4) were implemented on a LoRa sensor node and
no significant energy consumption from the algorithm
calculations was discovered. It was discovered that using these
lossy compression algorithms led to significant reduction on
energy consumption and thus it can be effective solution for
lengthening the battery powered sensor node lifetime. The
energy saving was due to reduction of the wireless
transmitting periods [15], [16].

In this study, the M-LRbTC algorithm was tested using N
values of 3, 4, and 5. The RT-LRbTC algorithm was tested
with the original version and two newly developed versions:
RT-LRbTC-2Δt and RT-WLRbTC-2Δt. All algorithms were
programmed and tested using MATLAB. The datasets were
already available, and thus, this situation does not correspond
to the situation for compressing the real-time sensor data
stream. This testing situation demonstrates how the algorithm
would have compressed the data when the dataset was
collected. As the temperature at the same geological location
behaves rather similarly year by year, this testing indicates
how the algorithm could possibly compress the data in that
situation. Similar behavior at certain geological locations for
other environmental magnitudes is also expected.

The environmental magnitudes were temperature, air
pressure and wind speed. The datasets used were obtained
from the Finnish Meteorological Institute’s open data service
[17]. The datasets tested were Salla Naruska measurement
station data and Hanko Tulliniemi measurement station data.

All datasets were for the full year 2019 with 10-minute
measurement intervals. The temperature was measured in
degrees Celsius with 0.1 degrees resolution, air pressure was
measured in hPa with 0.1 hPa resolution and wind speed was
measured in 10-minute average value with 0.1 m/s resolution.

The Salla Naruska measurement station is in the eastern
part of Finnish Lapland. It is one of the coldest locations in
Finland. The Hanko Tulliniemi measurement station is in the
southernmost part of Finland, 100 m from the sea. These two
locations have very different climates. The Salla Naruska
dataset was also used in [2] but the Hanko Tulliniemi dataset
is a new experiment. In [2] LTC, M-LRbTC, and RT-LRbTC
compression ratios with different error bound values were
tested using the Salla Naruska dataset (temperature, air
pressure, and wind speed). In this study, the same compression
ratio simulations for the Salla Naruska datasets were repeated,
but the RT-LRbTC algorithm’s MATLAB version was further
developed to give the CR value calculated as only line
parameters are needed for each linear section and possible
single values (not included in any linear segment) were taken
into account. In [2] the same situation was achieved by
doubling the CR values achieved from the compressed
datasets, which included the start and end points of the linear
segments. The method in [2] gives the same values for CR
when the CR is high but gives erroneous results if the
compressed dataset also includes single values that do not
belong to linear segments. In this study, the RMSE values for
each algorithm were calculated using different error-bound
values. In addition, the CR and RMSE values were compared,
and two new algorithms were tested for each environmental
dataset.

1) Temperature Datasets
The Salla Naruska dataset contains 52 463 values and the

Hanko Tulliniemi dataset 51 961 measurement values with
10-minute measurement intervals. For the full year, the dataset
should contain 52 560 values but both datasets have some
periods with missing values. The individual missing values
and short periods with missing values in the original datasets
were linearly interpolated. Longer periods with missing values
were removed from the dataset. The temperature values in the
Salla Naruska dataset varied between -37.2 °C and +30 °C.
The temperature values in the Hanko Tulliniemi dataset varied
between -12.3 °C and +27.6 °C.

Table II presents a comparison between these two
temperature datasets. Both the AC and SD values were higher
for the Salla Naruska temperature dataset than for the Hanko
Tulliniemi dataset. It indicates a lower compression ratio for
Salla Naruska dataset.

TABLE II. TEMPERATURE DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.2077 0.1282

Standard deviation (SD) 0.3473 0.2221

The results achieved in [13] can be used to estimate the
compression ratios with error bound of 0.5 °C for the LTC and
M-LRbTC algorithms when the AC and SD values are known.
With AC values from Table II the estimation gives CR = 10.4
(Salla Naruska dataset) and CR = 15.8 (Hanko Tulliniemi
dataset) for LTC when the error bound is 0.5 °C. The real CR

values achieved in this paper were 10.2 and 14.1 respectively.
For M-LRbTC (N = 3) the estimation gives CR values 4.0 and
5.8 compared to the results achieved here which are 4.0 and
5.4 respectively. The estimations from [13] are close to the
real compression ratios achieved in this study.

Fig. 2 shows the performance results of the different
compression algorithms. Fig. 2 (a) and (b) show the
compression ratios as a function of error bound (from 0.1 to
1.0 degrees Celsius). The LTC has a superior compression
ratio compared to the linear regression-based algorithms. The
difference between the different linear-regression-based
algorithms is not very large. The compression performance
difference between M-LRbTC N = 3 and N = 4 was slightly
larger than that between N = 4 and N = 5. RT-LRbTC has the
lowest compression ratio in terms of linear lines (start and end
points), but it benefits from the fact that only one transmission
period is required for each linear line. In Fig. 2 (a) and (b), for
different RT-LRbTC (RT-LRbTC, RT-LRbTC-2Δt, and RT-
WLRbTC-2Δt) algorithms, the compression ratio values are
presented as only the line parameters are stored/sent at the
beginning of each linear line.

The new variations in RT-LRbTC (RT-LRbTC-2Δt and
RT-WLRbTC-2Δt) have a slightly better compression
performance than the basic RT-LRbTC. This can be observed
in Fig. 2 (a) and (b) for the compression ratio. In general, all
the tested compression algorithms performed better for the
Hanko Tulliniemi dataset than for the Salla Naruska dataset,
as indicated by the AC and SD values in Table II. A typical
error bound for temperature data in many applications can be

approximately ± 0.5 degrees Celsius. One possibility to
choose the error bound is to use the margin of error of the
temperature sensor, which can be found in the sensor’s data
sheet [3].

In Fig. 2 (c) and (d) the RMSE values with different error
bounds can be seen. The LTC has the largest RMSE values,
which means that the drawback of a better compression ratio
is lower compression quality. Among linear-regression-based
methods, the results are similar between them. As RT-LRbTC
has a higher compression ratio, it also has a lower compression
quality than the M-LRbTC methods. The advantage of RT-
LRbTC is its shorter latency and moderate compression ratio,
but its drawback is the larger average reconstruction error after
compression than that of M-LRbTC.

The compression quality measurements (RMSE) are
similar level with all linear regression-based algorithms, as
can be seen in Fig. 2 (c) and (d). RT-WLRbTC-2Δt does not
show any better performance than RT-LRbTC-2Δt in any
measurements for these temperature datasets. In Fig. 2 (e) and
(f), the RMSE values are compared in terms of the
compression ratio. In this comparison, the LTC has the best
performance, even though the previous comparisons in (c) and
(d) indicate a lower compression quality. The LTC benefits
from its superior compression ratio compared to the other
tested methods.

2) Air Pressure Datasets
The same algorithms were tested for the air pressure

datasets. The datasets are listed in Table III. The
characteristics of both datasets were very similar, indicating

Fig. 2. Compression algorithms’ performance for temperature datasets

very similar behavior for both datasets. There was only a small
difference between the AC and SD values. The air pressure
values in the Salla Naruska dataset varied between 967.2 hPa
and 1039.5 hPa. In Hanko Tulliniemi dataset the values were
between 970.5 hPa and 1043.1 hPa.

TABLE III. AIR PRESSURE DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.0856 0.0836

Standard deviation (SD) 0.1234 0.1249

In Fig. 3, all the results for compressing the two tested air
pressure datasets are shown. Both datasets are full-year
datasets with 10-minute measurement intervals.

As shown in Fig. 3 (a) and (b), the compression ratios were
significantly higher than for the temperature data (Fig. 2).
These are not directly comparable, but as both magnitudes are
measured with 0.1 (degree and hPa) resolution, the error
bounds of 0.1 – 1.0 can thus be compared to each other
sufficiently. In general, the air pressure data changes rather
slowly; thus, it is well suited for linearity-based compression
algorithms. The AC and SD values in Table III are
significantly lower than those for the temperature datasets in
Table II, thus indicating better compression performance.
From the results obtained in [13] it is possible to estimate the
compression ratios for the LTC and M-LRbTC algorithms.
The data from [13] estimated the compression ratio with 0.5

hPa error bound for LTC to be 27.9 for the Salla Naruska
dataset and 28.3 for the Hanko Tulliniemi dataset. The results
from MATLAB simulations provided CR values 29.6 for the
Salla Naruska dataset and 29.8 for the Hanko Tulliniemi
dataset. These results are very close to the estimations.

The results for RT-LRbTC-2Δt and RT-WLRbTC-2Δt
were very close to the RT-LRbTC values in terms of the
compression ratio (Fig. 3 (a) and (b)). All linear regression-
based algorithms are very close to each other in terms of the
quality metrics (RMSE), as can be seen in Fig. 3 (c) and (d).
Again, the LTC has a superior compression ratio but also the
largest average construction error. The difference between the
various linear regression-based algorithms is small in terms of
the quality metrics and compression ratio. The three different
RT-LRbTC algorithms presented the best compression
performance among the linear regression-based algorithms. In
Fig. 3 (e) and (f), the RMSE values of the different algorithms
are compared in terms of compression ratio. The performance
order between the algorithms is quite similar to that of the
temperature data, as seen previously.

3) Wind Speed Datasets
The two wind speed datasets have different characteristics.

As the measurement stations are located in very different
places, one close to the sea and the other in Lapland in the
lowland, the wind conditions are different. The AC and SD
values are listed in Table IV. The AC and SD values were
higher for the Hanko Tulliniemi dataset, which indicates
lower compression ratios for that dataset. The wind speed was
measured as 10-minute average values. Otherwise, the wind
speed is gusty if measured in instantaneous values, and thus,

Fig. 3. Compression algorithms’ performance for air pressure datasets

it does not exhibit linear behavior. The values in the Salla
Naruska dataset were 0 m/s - 9.3 m/s. The values in the Hanko
Tulliniemi dataset were 0 m/s - 21.8 m/s.

TABLE IV. WIND SPEED DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.2844 0.4188

Standard deviation (SD) 0.4125 0.5917

The compression ratios for the Salla Naruska dataset are
significantly higher than those for the Hanko Tulliniemi
dataset, as can be seen in Fig. 4 (a) and (b). For example, LTC
with error bound 0.5 m/s achieves CR = 5.54 for Salla Naruska
dataset and CR = 3.98 for Hanko Tulliniemi dataset. The
estimations obtained from the data in [13] provide the
compression ratio estimations of 5.5 for the Salla Naruska
dataset and 3.6 for Hanko Tulliniemi dataset for LTC with the
same error bound. These estimations were close to the actual
compression ratios achieved. The estimations for M-LRbTC,
N = 3 give CR = 2.7 for Salla Naruska data and CR = 2.1 for
Hanko Tulliniemi data. The MATLAB simulation yielded the
same values. The compression ratios are clearly higher for the
Salla Naruska dataset than for the Hanko Tulliniemi dataset,
as indicated by the AC and SD values of the datasets. RT-
LRbTC-2Δt and RT-WLRbTC-2Δt exhibited the higher CR
values compared with the other linear regression-based
methods.

The RMSE results are shown in Fig. 4 (c) and (d). The
performance results with these quality measurements were at
the same level for each linear-regression-based method. The

differences were very limited. LTC has a significantly lower
compression quality (higher RMSE), as can be seen in Fig. 4
(c) and (d). The different characteristics of the datasets did not
appear to affect the quality metrics. The RMSE results were
very similar for both the datasets. When comparing the RMSE
values as a function of compression ratio (Fig. 4 (e) and (f)),
the performances of the different algorithms differ less from
each other than with temperature and air pressure datasets.

The new algorithms, RT-LRbTC-2Δt and RT-WLRbTC-
2Δt, showed better overall performance than the other linear
regression-based algorithms for wind speed datasets. Thus,
these new algorithms are potential methods for compressing
wind-speed data if the additional inherent latency is
acceptable.

VI. SUMMARY OF THE RESULTS
LTC had the best compression efficiency for all datasets,

but at the same time, it had the largest RMSE values with a
certain error bound. The M-LRbTC algorithm benefits from
increasing the N value from 3 to 4 or 5; however, it makes the
algorithm more complex and increases the inherent latency.
The new versions (RT-LRbTC-2Δt and RT-WLRbTC-2Δt)
have slightly better compression performance than RT-
LRbTC. These new algorithms have the same benefit as the
RT-LRbTC in that only one transmitting period is needed for
each linear segment. The weighted linear regression did not
improve the compression performance compared with RT-
LRbTC-2Δt. Among the tested algorithms, RT-LRbTC is the
best algorithm if a short inherent latency is required, as shown
in Table I. If the predicted latency is required, then different
versions of RT-LRbTC or M-LRbTC (when regression line
parameters are sent) are suitable algorithms. LTC has superior
compression performance, but unpredictable latency; thus, it

Fig. 4. Compression algorithms’ performance for wind speed datasets

is not well suited for online data stream compression or near
real-time applications. With a certain error bound, the LTC
had the largest RMSE values, and thus had the lowest
compression quality. Linear regression-based algorithms have
very similar RMSE values, and thus have a similar
performance in terms of compression quality. The two new
algorithms proved to be suitable for compressing online
environmental sensor data streams with a predictable but
slightly longer inherent latency than the original RT-LRbTC.

VII. CONCLUSIONS
Different linearity-based sensor data compression

algorithms were presented, and their efficiency to compress
different environmental microclimate datasets was tested with
real datasets. The environmental magnitudes tested were
temperature, air pressure and wind speed. Algorithms were
compared using the compression ratio (CR) and quality
measurements as the root mean square error (RMSE). Inherent
latency was used as a feature to compare the ability of
different algorithms to compress data in the online mode.

The datasets used were real datasets acquired from the
Finnish Meteorological Institute’s Open Data Service. The
datasets were used retrospectively and not in the online mode.
Thus, the dataset characteristics can be used to compare the
compression results of different compression algorithms. The
datasets were measurement values from the year 2019, but the
characteristics of those datasets can be used to predict the
performance of different algorithms in the future in that
measurement station and measurement setup. In different
places (microclimates), different magnitudes have a behavior
typical for that place. Thus, the available dataset for that
specific location can be used to predict the characteristics of
future datasets and thus predict the performance of the
different algorithms.

Two new versions of the RT-LRbTC are presented in this
paper. These new versions were tested and compared with
other algorithms. LTC has a superior compression ratio
compared to other methods but as a disadvantage, LTC has
unpredictable inherent latency. The quality measurements
demonstrate that the LTC also has the largest reconstruction
error when a certain error bound is used. The quality
measurements between the different versions of M-LRbTC
and RT-LRbTC are very close to each other.

The new versions of the RT-LRbTC algorithm (RT-
LRbTC-2Δt and RT-WLRbTC-2Δt) present better
compression ratios than the basic version of the RT-LRbTC,
but at the cost of a larger inherent latency. In addition, the
quality measurements are slightly better for the new versions.
Using weighted linear regression to calculate the regression
line, weighting the last value used to calculate the line, did not
yield any better results than the regular linear regression line.
Thus, it only adds the computational complexity of the
compression algorithm, without any significant benefits.

All the presented and tested linearity-based compression
algorithms are very simple and thus suitable for use in
constrained wireless sensor nodes to reduce the overall energy
consumption and extend the battery lifetime. These
compression methods can significantly reduce the number of
wireless transmission periods and, consequently, lower the
energy consumption of the sensor node.

REFERENCES
[1] O. Väänänen and T. Hämäläinen, “Compression Methods for

Microclimate Data Based on Linear Approximation of Sensor Data,”
NEW2AN 2019, Lecture Notes in Computer Science, vol 11660.
Springer, Cham. https://doi.org/10.1007/978-3-030-30859-9_3

[2] O. Väänänen and T. Hämäläinen, "Sensor Data Stream on-line
Compression with Linearity-based Methods," 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), 2020, pp. 220-225,
doi: 10.1109/SMARTCOMP50058.2020.00049.

[3] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D.
Estrin, "Lightweight temporal compression of microclimate datasets
[wireless sensor networks]," 29th Annual IEEE International
Conference on Local Computer Networks, 2004, pp. 516-524, doi:
10.1109/LCN.2004.72.

[4] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan and W. A. Coberly,
"ECG data compression techniques-a unified approach," in IEEE
Transactions on Biomedical Engineering, vol. 37, no. 4, pp. 329-343,
April 1990, doi: 10.1109/10.52340.

[5] D. Parker, M. Stojanovic, and C. Yu, “Exploiting temporal and spatial
correlation in wireless sensor networks,” 2013 Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, 2013, pp. 442-
446, doi: 10.1109/ACSSC.2013.6810315.

[6] J. Azar, A. Makhoul, R. Darazi, J. Demerjian, and R. Couturier, “On
the performance of resource-aware compression techniques for vital
signs data in wireless body sensor networks,” 2018 IEEE Middle East
and North Africa Communications Conference (MENACOMM),
Jounieh, 2018, pp. 1-6, doi: 10.1109/MENACOMM.2018.8371032.

[7] O. Sarbishei, “Refined Lightweight Temporal Compression for
Energy-Efficient Sensor Data Streaming,” 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp.
550-553, doi: 10.1109/WF-IoT.2019.8767351.

[8] B. Li, O. Sarbishei, H. Nourani, and T. Glatard, “A multi-dimensional
extension of the Lightweight Temporal Compression method,” 2018
IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, 2018, pp. 2918-2923, doi: 10.1109/BigData.2018.8621946.

[9] L. Klus et al., “Direct Lightweight Temporal Compression for
Wearable Sensor Data,” In IEEE Sensors Letters, vol. 5, no. 2, pp. 1-4,
Feb. 2021, doi: 10.1109/LSENS.2021.3051809.

[10] S. Lu, Q. Xia, X. Tang, X. Zhang, Y. Lu and J. She, "A Reliable Data
Compression Scheme in Sensor-Cloud Systems Based on Edge
Computing," in IEEE Access, vol. 9, pp. 49007-49015, 2021, doi:
10.1109/ACCESS.2021.3068753.

[11] W. W. Piegorsch, Statistical Data Analytics: Foundations for Data
Mining, Informatics, and Knowledge Discovery. Chichester, West
Sussex: Wiley, 2015.

[12] S. Chatterjee and A. S. Hadi, Regression Analysis by Example, John
Wiley & Sons, 2012.

[13] O. Väänänen, M. Zolotukhin, and T. Hämäläinen, “Linear
Approximation Based Compression Algorithms Efficiency to
Compress Environmental Data Sets,” In Web, Artificial Intelligence
and Network Applications. WAINA 2020. Advances in Intelligent
Systems and Computing, vol 1150. Springer, Cham. doi: 10.1007/978-
3-030-44038-1_11

[14] N. Q. V. Hung, H. Jeung, and K. Aberer, “An Evaluation of Model-
Based Approaches to Sensor Data Compression,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 11, pp.
2434-2447, Nov. 2013, doi: 10.1109/TKDE.2012.237.

[15] O. Väänänen and T. Hämäläinen, "LoRa-Based Sensor Node Energy
Consumption with Data Compression," 2021 IEEE International
Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT),
2021, pp. 6-11, doi: 10.1109/MetroInd4.0IoT51437.2021.9488434.

[16] O. Väänänen and T. Hämäläinen, "Efficiency of temporal sensor data
compression methods to reduce LoRa-based sensor node energy
consumption", In Sensor Review, Vol. 42 No. 5, pp. 503-516,
2022, https://doi-org.ezproxy.jyu.fi/10.1108/SR-10-2021-0360

[17] Finnish Meteorological Institute’s open data–service. [Online]
Available: https://en.ilmatieteenlaitos.fi/open-data

