Compression methods for microclimate data based on linear approximation of sensor data
Väänänen, O., & Hämäläinen, T. (2019). Compression methods for microclimate data based on linear approximation of sensor data. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2019, ruSMART 2019 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things and Smart Spaces (pp. 28-40). Springer. Lecture Notes in Computer Science, 11660. https://doi.org/10.1007/978-3-030-30859-9_3
Julkaistu sarjassa
Lecture Notes in Computer SciencePäivämäärä
2019Tekijänoikeudet
© Springer International Publishing AG 2019
Edge computing is currently one of the main research topics in the field of Internet of Things. Edge computing requires lightweight and computationally simple algorithms for sensor data analytics. Sensing edge devices are often battery powered and have a wireless connection. In designing edge devices the energy efficiency needs to be taken into account. Pre-processing the data locally in the edge device reduces the amount of data and thus decreases the energy consumption of wireless data transmission. Sensor data compression algorithms presented in this paper are mainly based on data linearity. Microclimate data is near linear in short time window and thus simple linear approximation based compression algorithms can achieve rather good compression ratios with low computational complexity. Using these kind of simple compression algorithms can significantly improve the battery and thus the edge device lifetime. In this paper linear approximation based compression algorithms are tested to compress microclimate data.
...
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-30858-2Konferenssi
Conference on Internet of Things and Smart SpacesKuuluu julkaisuun
NEW2AN 2019, ruSMART 2019 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things and Smart SpacesISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32903944
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Linearity-based Sensor Data Online Compression Methods for Environmental Applications
Väänänen, Olli; Hämäläinen, Timo (IEEE, 2023)Environmental monitoring is a typical Internet of Things (IoT) application. Environmental monitoring plays a significant role, for example, in smart farming and smart city applications. Environmental magnitudes are usually ... -
Efficiency of temporal sensor data compression methods to reduce LoRa-based sensor node energy consumption
Väänänen, Olli; Hämäläinen, Timo (Emerald, 2022)Purpose Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a wireless sensor node, and by compressing ... -
LoRa-Based Sensor Node Energy Consumption with Data Compression
Väänänen, Olli; Hämäläinen, Timo (IEEE, 2021)In this paper simple temporal compression algorithms' efficiency to reduce LoRa-based sensor node energy consumption has been evaluated and measured. It is known that radio transmission is the most energy consuming operation ... -
Modeling and Mitigating Errors in Belief Propagation for Distributed Detection
Abdi, Younes; Ristaniemi, Tapani (Institute of Electrical and Electronics Engineers (IEEE), 2021)We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.