Show simple item record

dc.contributor.authorLind, Leevi
dc.contributor.authorPenttilä, Antti
dc.contributor.authorRiihiaho, Kimmo A.
dc.contributor.authorMacLennan, Eric
dc.contributor.authorPölönen, Ilkka
dc.date.accessioned2023-08-22T07:18:16Z
dc.date.available2023-08-22T07:18:16Z
dc.date.issued2023
dc.identifier.citationLind, L., Penttilä, A., Riihiaho, K. A., MacLennan, E., & Pölönen, I. (2023). Deep learning-based asteroid surface temperature evaluation from disk-resolved near-infrared spectra for thermal excess correction. <i>Planetary and space science</i>, <i>235</i>, Article 105738. <a href="https://doi.org/10.1016/j.pss.2023.105738" target="_blank">https://doi.org/10.1016/j.pss.2023.105738</a>
dc.identifier.otherCONVID_184010231
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88629
dc.description.abstractNear-Earth asteroids can become warm enough to emit radiation at near-infrared wavelengths, close to 2.5 μm. Thermal radiation can interfere with reflectance measurements in these wavelengths, and should be evaluated and corrected for. Current methods for correcting disk-resolved measurements either rely on previous Earth-based observations or perform heavy computations to find the thermally emitted spectral radiance. Using results based on disk-integrated observations may lead to errors for some cases where the target asteroid surface is not homogeneous. Computational efficiency is desirable for those future missions where data processing is to be per formed on-board the spacecraft due to a limited downlink budget, such as missions employing small spacecraft. We propose to predict the temperature of an asteroid surface element from its observed spectral radiance using a convolutional neural network. The thermal spectral radiance emitted by the asteroid surface can be approximated using the temperature, and subsequently subtracted from the original spectral radiance. The model was tested using OSIRIS-REx measurements of asteroid (101955) Bennu with promising results. The performance of the model should be validated further in the future as asteroid missions produce suitable data. Both accuracy and speed of the method could likely be increased significantly with further development.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesPlanetary and space science
dc.rightsCC BY 4.0
dc.subject.otherasteroid
dc.subject.othernear-infrared
dc.subject.otherdisk-resolved
dc.subject.otherreflectance spectroscopy
dc.subject.otherthermal excess
dc.subject.otherneural network
dc.titleDeep learning-based asteroid surface temperature evaluation from disk-resolved near-infrared spectra for thermal excess correction
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202308224726
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0032-0633
dc.relation.volume235
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber335615
dc.subject.ysoasteroidit
dc.subject.ysolämpösäteily
dc.subject.ysolähi-infrapunaspektroskopia
dc.subject.ysoneuroverkot
dc.subject.ysolämpötila
dc.subject.ysomallintaminen
dc.subject.ysosyväoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27330
jyx.subject.urihttp://www.yso.fi/onto/yso/p7127
jyx.subject.urihttp://www.yso.fi/onto/yso/p27205
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p2100
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://github.com/silmae/AsTherCorNN
dc.relation.doi10.1016/j.pss.2023.105738
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationThis work was funded by the Smart–HSI project of the Academy of Finland (grant number 335615).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0