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Near-Earth asteroids can become warm enough to emit radiation at near-infrared wavelengths, close to 2.5 pm.
Thermal radiation can interfere with reflectance measurements in these wavelengths, and should be evaluated
and corrected for. Current methods for correcting disk-resolved measurements either rely on previous Earth-based
observations or perform heavy computations to find the thermally emitted spectral radiance. Using results based
on disk-integrated observations may lead to errors for some cases where the target asteroid surface is not ho-
mogeneous. Computational efficiency is desirable for those future missions where data processing is to be per-
formed on-board the spacecraft due to a limited downlink budget, such as missions employing small spacecraft.
We propose to predict the temperature of an asteroid surface element from its observed spectral radiance using a
convolutional neural network. The thermal spectral radiance emitted by the asteroid surface can be approximated
using the temperature, and subsequently subtracted from the original spectral radiance. The model was tested
using OSIRIS-REx measurements of asteroid (101955) Bennu with promising results. The performance of the
model should be validated further in the future as asteroid missions produce suitable data. Both accuracy and

speed of the method could likely be increased significantly with further development.

1. Introduction

One of the methods for characterizing asteroid surface composition is
reflectance spectroscopy: measuring the amount of sunlight reflected
from the asteroid's surface as a function of wavelength and looking for
features characteristic to minerals and other materials, and surface
properties (Gaffey, 1993; DeMeo et al., 2009; Binzel et al., 2019). As-
teroids are, by definition, small compared to planetary bodies. Typically
only disk-integrated observations are possible from Earth or its vicinity:
the target is seen as an unresolved point of light. Disk-resolved mea-
surements, which allow the detection of spatial variations, usually
require close exploration by robotic spacecraft. Recent high-profile ex-
amples of such asteroid missions include the JAXA Hayabusa2 to asteroid
(162173) Ryugu (Kitazato et al., 2019) and the NASA OSIRIS-REx to
(101955) Bennu (Simon et al., 2020). While the main objective of both
missions was returning a sample of asteroid regolith to Earth, they also
mapped the reflectance properties of their targets to provide context for
the retrieved sample.

The near-infrared (NIR) region of wavelengths (definitions vary, but
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in this study NIR refers to approximately 1-3 pm) covers spectral sig-
natures important for mineralogical analysis of asteroids (DeMeo et al.,
2009; Gaffey, 1993). For example, the reflectance of pyroxene has
prominent absorption features at the wavelengths of 1 pm and 2 pm
(Gaffey, 1993). Analyzing spectroscopic data from this wavelength range
can be problematic due to an overlap in reflected sunlight and thermal
emission from the asteroid's surface. As an asteroid absorbs sunlight its
surface gets warmer. This moves the thermal emission toward shorter
wavelengths, and for sufficiently warm asteroids a significant thermal
contribution can be found in the NIR region. This thermal emission
coincident with reflected light is known as thermal excess.

The overlap of reflected light and thermal emission in NIR observa-
tions of asteroids is a known and documented property. Rivkin et al.
(2005) evaluated that in disk-integrated measurements thermal flux
could contribute up to several tens of percent of the flux detected from a
near-Earth object (NEO) at 2.5 pm wavelength. This thermal excess is
larger for darker objects closer to the Sun. The overlap of reflected and
thermally emitted light is both a problem and an opportunity. If the
presence of thermal emission is not recognized and evaluated correctly, it
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can cause large errors in reflectance spectra. On the other hand, if the
thermal contribution is evaluated correctly, it can offer additional in-
formation about the asteroid. In disk-integrated spectral measurements
the thermal excess can be used to constrain the albedo and diameter of an
asteroid (Reddy et al., 2012).

The thermal excess or thermal tail can naturally also be present in
disk-resolved NIR measurements of asteroids. Spectral measurements
from both OSIRIS-REx and Hayabusa2 required correction for thermal
emission to each observed spectrum in order to accurately evaluate the
spectral reflectances of their targets. For Hayabusa2 NIRS3 instrument
(Iwata et al., 2017) data the correction was made with two methods,
yielding results that were in good agreement. Both approaches relied on
global properties of the target asteroid Ryugu: the first method used an
albedo derived from ground-based measurements, and the second a
global reflectance trend established from NIRS3 measurements (Kitazato
et al., 2019). For OSIRIS-REx's OVIRS instrument (Reuter et al., 2018)
several correction schemes were tested with data measured using OVIRS,
and the best-performing one was selected. This method involved fitting
325 thermal radiance spectra of different temperatures to each observed
spectral radiance, and selecting one of them by minimizing a criterion for
the best fit (Simon et al., 2020).

An overlap of reflected sunlight and thermal emission was also
detected in measurements of (1) Ceres and (4) Vesta made with the VIR
instrument (De Sanctis et al., 2011) of the NASA Dawn spacecraft. In Tosi
et al. (2014), a Bayesian method for retrieving the surface temperature
and emissivity was applied to VIR data from Vesta. For each analyzed
spectrum, the authors constructed a synthetic spectral radiance in the
wavelength range from 4.5 pm to 5.1 pm by summing modeled spectral
radiances for thermal emission and reflected sunlight. They then fit this
synthetic spectral radiance to the observed spectral radiance with a
Bayesian optimization process, using the surface temperature and spec-
tral emissivity as fitting parameters. After retrieving the temperature
through this fit, the authors performed a second Bayesian fitting for
shorter wavelengths by keeping the temperature fixed and using only the
spectral emissivity as a free parameter. The Bayesian approach to
retrieving thermal properties allowed the authors to include preliminary
estimates of temperature and emissivity into the optimization process as
starting guesses. The method presented in Tosi et al. (2014) was based on
an earlier approach to the same problem. In Keihm et al. (2012) the
authors used a similar method to analyze the thermal properties of (21)
Lutetia, observed during a fly-by of the ESA Rosetta spacecraft.

In both Raponi et al. (2019b) and Raponi et al. (2019a), surface
temperatures and emissivities of different areas of Ceres were found from
VIR data through a fitting process. The authors modeled the sum of
thermally emitted and reflected spectra, and fit the model to each
observed spectrum using as free parameters not only the temperature and
emissivity, but also several parameters related to the reflection properties
and composition of the surface. The thermal properties and the reflection
properties of the surface were retrieved simultaneously through one
iterative fitting process.

Beyond the correction of reflectance spectra, maps of surface tem-
perature and emissivity are useful for the thermal modeling of asteroids.
A temperature map enables determining the thermal inertia of the sur-
face material. This property, which describes a material's ability to resist
temperature change, is closely connected to the physical properties of the
surface material, for example the size of the regolith grains (Delbo et al.,
2015). Temperature maps have been used to find thermal inertia values
from Rosetta VIRTIS measurements of Lutetia (Coradini et al., 2011) and
Steins (Leyrat et al., 2011), and from DAWN VIR measurements of Ceres
(Rognini et al., 2020) and Vesta (Tosi et al., 2014).

One future mission where the overlap of thermal emission and re-
flected light may play a role is ESA Hera, the European component of the
Asteroid Impact and Deflection Assessment (AIDA). The aim of AIDA is to
test a deflection technique for potentially hazardous asteroids by driving
a kinetic impactor to the moon of a binary asteroid and examining the
change in its orbit. AIDA consists of two missions: the impactor, NASA
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Double Asteroid Redirection Test (DART) (Rivkin et al., 2021) which
collided with its target in September 2022, and Hera (Michel et al.,
2022), which will arrive in December 2026 to examine the aftermath of
the collision. The target of AIDA is the binary asteroid (65803) Didymos,
and DART collided with Dimorphos, the satellite of the primary body.

Hera, set to launch in 2024, is a mission for both science and tech-
nology demonstration. Hera will carry two CubeSats, Juventas (Goldberg
et al., 2019) and Milani (Ferrari et al., 2021), which will be deployed in
the vicinity of Didymos. The three spacecraft will set up a communication
network between them and work in concert to examine their target
asteroid. Milani's primary scientific payload is the ASPECT imaging
module. ASPECT consists of four separate spectral instruments, each
covering a different wavelength range with a spectral resolution of
approximately 20 nm in the visual wavelengths, and approximately 40
nm in infrared. The different ranges have slight overlap, allowing con-
struction of continuous spectra from 0.5 pm to 2.5 pm. ASPECT is tasked
with mapping the reflectance properties of both Didymos and its satellite
Dimorphos (Michel et al., 2022). According to thermophysical modeling
of the Didymos system (Pelivan et al., 2017), an overlap of reflected
sunlight and thermal emission may be present in the longer end of AS-
PECT's wavelength range. Producing reliable reflectance results with
data from ASPECT requires assessing the thermal emission and removing
it. In this work, we examine the challenge of correcting spectral radiances
for thermal excess found in ASPECT's wavelength range. We also consider
how data from possible future missions carrying similar instruments
could be corrected for the same errors.

The correction methods used for NIRS3 data of Ryugu relied on global
properties of the target. One of the methods made use of the albedo, and
the other assumed the linearity of an area of the reflectance spectrum. In
the Didymos system, the most interesting element will be the crater
created by the DART collision. This is a relatively small area that could
differ significantly from the rest of the surface of both Didymos and
Dimorphos. The small crater area will be overshadowed by the bulk of
the asteroid in disk-integrated observations, and thus relying on such
measurements for corrections may lead to errors. Similarly, establishing a
global reflectance trend, as was done with corrections of OVIRS data of
Bennu, could invite errors when variation in the reflectance is expected.

The method used to analyze data from Ceres in Raponi et al. (2019b)
and Raponi et al. (2019a) also relied on prior knowledge of the target.
The approach requires a shape model of the asteroid and laboratory
spectra of minerals that are expected to be present on the surface. The
method described in Tosi et al. (2014) is also mentioned to make use of a
shape model, but the authors note that omitting the photometric
correction which utilized the shape model led to only small errors in
temperature estimates. Neither of these methods treats the emissivity as
constant, but instead they tie it to the spectral reflectance.

The method used for correcting OVIRS data in Simon et al. (2020)
includes fitting 325 different functions to each observed spectrum and
then selecting the best fit. The methods for analyzing data from Ceres in
Raponi et al. (2019b) and Raponi et al. (2019a), from Vesta in Tosi et al.
(2014), and from Ryugu in Kitazato et al. (2019) are also built on iter-
ative fitting processes. The computational cost of fitting functions to
thousands of measured spectra is not an issue when the data is streamed
back to Earth where processing power is plentiful. However, missions
employing small satellites such as CubeSats could benefit from process-
ing the data from their instruments further on the spacecraft's on-board
computer (OBC) Bruhn et al. (2020). The power of transmission equip-
ment on such spacecraft is limited, also limiting the speed of down-
loading data back to Earth. More extensive processing on the OBC could
reduce the volume of data needed to send back to Earth, as only ready
data products can be downloaded instead of all raw data captured with
instruments. The processing power available for a computer placed in a
small spacecraft is limited, making computationally efficient methods
desirable. Extensive on-board computations are not planned for Hera's
Milani which can relay its data to Earth through the main Hera space-
craft. For missions where a CubeSat is to work alone, such as ESA's
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planned M-ARGO mission (Walker et al., 2018; Topputo et al., 2021),
these considerations could be more relevant.

Our proposed method of correcting disk-resolved radiance measure-
ments for thermal emission relies on deep learning. Deep convolutional
neural networks (CNN) have in recent years been used to predict many
quantities from remotely sensed spectral data, for example the chloro-
phyll content of trees (Annala et al., 2020), water quality parameters
(Hakala et al., 2020), and also mineral composition of asteroids (Korda
et al., 2023). While neural networks are notorious for the amount of
computational resources needed to train them, producing predictions
with a trained neural network is not as demanding. We feed an observed
spectral radiance, a sum of reflected and thermal components, to a deep
learning model as input, and take the temperature of the observed surface
element as an output. Together with an estimated emissivity, the tem-
perature can be used with Planck's law to estimate the thermally emitted
spectral radiance. This spectrum can then be subtracted from the original
observed radiance to find the reflected spectral radiance. This study aims
to answer the following questions:

1. Can a CNN be used to predict asteroid surface element temperature
from disk-resolved spectral radiances with wavelength range of
0.5-2.5 pm?

2. Can such temperature predictions be reliably used to correct the
spectral radiance observations for thermal excess?

3. How well would this temperature evaluation and correction method
generalize for any asteroid mission employing a near-infrared spectral
imager?

Implementing a neural network solution requires designing an ar-
chitecture for the network, as well as preparing large amounts of data for
the training phase. These are described in Sec. 3 together with our
approach to testing the network. The results of these tests are presented
in Sec. 4, and their implications are discussed in Sec. 5. Finally, conclu-
sions are drawn in Sec. 6.

2. Materials and methods

Employing artificial neural networks and other machine learning
methods in the analysis of astronomical data is not a new development.
With its large data volumes, astronomy was one of the first fields to
utilize these tools in automating data-analysis tasks in the 1980s (Ball
and Brunner, 2010). Applying deep learning to asteroid spectra has
likewise been done before this study, for example in Penttila et al.
(2021). We assume the reader is already familiar with the general prin-
ciples of deep learning; for a more complete treatment of the subject, we
refer the reader to Goodfellow et al. (2016).

Our problem can be described as that of regression: using a model to
predict a continuous quantity from an input. The neural network used in
this study belongs in the broad category of feedforward networks, where
information flows only in one direction, from an input layer to an output
layer through hidden layers in between. The hidden layers of the
employed model consist of a block of 1D convolution layers followed by a
block of fully connected (also called dense) layers. This further classifies
our model as a convolutional neural network. The network was trained
with a supervised learning scheme, where each output of the network
was compared to a ground truth value using a loss function.

This section will describe the data used in training and testing of our
deep learning model, the architecture of the model, and the imple-
mentation. The program code and weights for the trained neural network
are available on GitHub at https://github.com/silmae/AsTherCorNN.

2.1. Data
Training an artificial neural network requires training data. This data

should represent the real task the network is designed to solve as well as
possible. Additionally, in our scheme of supervised learning, a ground
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truth corresponding to each training sample is required for evaluating the
performance of the network during training and optimizing the weights
of the network based on the evaluation.

We wish to infer asteroid surface element temperature from an
observed spectral radiance. Thus, the training data should be observed
spectral radiances, and the ground truth their associated temperatures.
Ideally, the training data would consist of disk-resolved spectral radiance
measurements of a wide variety of asteroids with different spectral
properties and orbits, measured with several phase angles. The measured
asteroids should also be warm enough to have noticeable thermal
emission at NIR wavelengths shortward of 2.5 pm.

Unfortunately, a dataset corresponding to these specifications does
not currently exist. Spacecraft missions to asteroids have been relatively
few, and even fewer are those that produced both surface temperatures
and approximately continuous spectral radiances in our wavelength re-
gion of interest, 0.5 pm-2.5 pm.

While individual datapoints from suitable missions are plentiful,
using data from only a few asteroids to train our network would not make
for a well-generalizable model. During training the model would learn to
predict for reflectance profiles present in the training data, and would
most likely give erroneous predictions when applied to asteroids outside
of the training population. Instead of training with observed spectra, we
opt to generate the training data through simulation and use measured
data only for testing the trained network.

Specifications for data suitable for testing our method are largely the
same as those for training data. The JAXA Hayabusa NIRS instrument did
not reach far enough into infrared with its wavelength range extending
from 0.76 to 2.25 pm (Kitazato et al., 2008), while the Hayabusa2 NIRS3
instrument ranging from 1.8 to 3.2 pm lacked shorter wavelengths (Iwata
et al., 2017). The NASA NEAR-Shoemaker NIS instrument data from Eros
is closer with wavelengths from 0.8 to 2.5 um, but the spacecraft did not
have a thermal instrument to provide ground truth temperatures corre-
sponding to the spectra (Prockter et al., 2002). Data from Dawn's VIR
would have a suitable wavelength range and temperatures derived from
the same data, but the target asteroids of the mission were not warm
enough to manifest significant thermal emission in the wavelength range
we are interested in. Spectra from Ceres are reported to have thermal
emission starting at 3.2 pm (Raponi et al., 2019a, 2019b), and those from
Vesta starting at 3.5 pm (Tosi et al., 2014). Observations of Lutetia and
(2867) Steins made by the Rosetta VIRTIS instrument during flybys have
the same problem. Thermal emission from Steins starts to become
prominent longward of 4 pm (Leyrat et al., 2011), and from Lutetia
longward of 3.5 pm (Keihm et al., 2012).

Finally, observations of Bennu made with the OSIRIS-REx OVIRS in-
strument match all our criteria. The wavelength range extends from 0.4
to 4.3 pm, each spectrum is accompanied by estimated values for tem-
perature and emissivity, and a noticeable thermal contribution is present
under the wavelength of 2.5 pm (Simon et al., 2020). We will use data
from these observations for testing our method.

In the following treatment where we describe the simulator used for
generating training samples, we denote the wavelength of electromag-
netic radiation with A, and mark all spectral quantities with the subscript
A. We can describe the observed spectral radiance L; as a sum of reflected
sunlight and thermal emission:

L; = Lg(Io 1 (ds), Ry, p, 0, 0.) + L1, (T €), (€8]

where Lg ; denotes reflected spectral radiance, and Lt ; denotes thermally
emitted spectral radiance (Hapke, 2012). In our model the reflected
radiance depends on five parameters: incident collimated spectral irra-
diance from the Sun I ;(d.), spectral reflectance R, and visual geometric
albedo p of the body, the incidence angle of sunlight 6;, and the emission
angle of reflected light 6. The incidence and emission angles are
measured from the local surface normal. An azimuth angle between the
directions of incident and reflected light is not required, as our simple
model does not account for azimuthal effects.
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Radiance reflected towards an observer from a surface element is
given by multiplying the incident collimated spectral irradiance I, ;(d)
with the bidirectional reflectance r; of the surface:

Ly, = Iza.z(d:-a)r/% (2)

The incident spectral irradiance at any heliocentric distance d can be
calculated by taking the solar spectral irradiance outside Earth's atmo-
sphere at an approximate heliocentric distance of 1 au, and scaling it with

the square of the heliocentric distance in astronomical units:
[:-:x./l(dx:-:) = 1@.2“ au)/d%;- 3)

The bidirectional reflectance r; was calculated using the Lommel-Seeliger
model of reflection (Shepard, 2017),

w, cos 6;

= 47 cos 0; + cos 6, @
where w; denotes the spectral single-scattering albedo, and 6; and 0, are
the incidence and emission angles, respectively. The Lommel-Seeliger
model allows for each photon only one interaction with the surface
medium: either scattering or absorption. The single-scattering albedo
describes the probability of a scattering event occurring in this single
interaction. The Lommel-Seeliger model also gives a relationship be-
tween the single-scattering albedo and geometric albedo of a perfectly
spherical body:

w = 8p. 5)

In our model, this law is used for spectral quantities as w; = 8p,. The
spectral geometric albedo p, was calculated by multiplying the visual
geometric albedo by the normalized reflectance spectrum, as p; = pR;.
The visual geometric albedo is measured at approximately 0.55 pm
wavelength, and in the normalization of asteroid reflectance spectra this
wavelength is set to unity: multiplying the two yields an “un-normalized”
reflectance spectrum, or spectral geometric albedo.

For simulating thermally emitted spectral radiance Lt; our model
employs Planck's law weighed with an emissivity e:

2hc? 1
e
ool

Here h is the Planck constant, c is the speed of light in vacuum, 4 is the
wavelength, kg is the Boltzmann constant, and T is the temperature.
Planck's law describes the thermally emitted spectral radiance from an
ideal blackbody. To make this spectrum more representative of a non-
ideally emitting asteroid, each produced spectrum was multiplied by
an emissivity, a constant value between 0 and 1.

The reason for using an emissivity that is constant with respect to
wavelength is to mimic our test data consisting of OVIRS measurements
of Bennu, which were corrected for thermal emission with a constant
emissivity. The approximated emissivities used for correcting OVIRS data
are not true emissivities, as they also include effects caused by surface
geometry (Simon et al., 2020). In this too, our data generation follows the
same approach. Treating emissivity as a constant rather than a spectrum
at near-infrared wavelengths has met with some criticism (Myhrvold,
2018), but we feel it is justified in this case. Training the neural network
with data created using spectral emissivities would make the network
perform worse with the test data.

Our model requires eight parameters to simulate one datapoint:
temperature T, emissivity ¢, heliocentric distance d., solar spectral
irradiance at 1 au I, ;(1 au), geometric albedo p, normalized reflectance
spectrum R, and incidence angle §; and emission angle d, measured from
the local surface normal. Out of these only the solar irradiance and the
reflectance spectrum are based on measurements. The spectral irradiance
outside Earth's atmosphere at approximately 1 au heliocentric distance

LT,A = €. (6)
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was retrieved from the website of the National Renewable Energy Lab-
oratory of the United States as the ASTM Standard Extraterrestrial
Spectrum Reference E—490-00 (Spectrum Reference e-490-00).

The used asteroid reflectance spectra come from a dataset described
in Penttila et al. (2021), specifically designed for machine learning
purposes. The data originate from two previous asteroid reflectance
datasets, the Bus-DeMeo dataset (DeMeo et al., 2009) and the MITHNEOS
dataset (Binzel et al., 2019). To balance the number of samples in
different classes and create more data, the authors of Penttila et al.
(2021) synthesized more spectra using an approach based on principal
component analysis. Artificially generating more data from existing
samples is a common approach to improving the performance of a ma-
chine learning model; this procedure is known as dataset augmentation
(Goodfellow et al., 2016). Spectra in the reflectance dataset had a
wavelength range of 0.45-2.45 pm, with 200 spectral channels at equal
intervals. This same wavelength vector was used in all our computations,
interpolating other spectral data to match it. We considered this range to
be sufficiently close to the wavelength range of the ASPECT imaging
module, which operates between 0.5 pm and 2.5 pm.

The reflectance dataset consisted of normalized asteroid spectra, with
the wavelength channel at 0.55 pm set to unity. The data also included
the spectral class of each sample. Our model for simulating reflected
radiance requires geometric albedos to convert the normalized spectral
reflectances into spectral geometric albedos. Mean albedos of the spectral
classes present in the data were retrieved from DeMeo and Carry (2013)
for classes A, B, C, D, K, L, Q, S, and V, and from Ryan and Woodward
(2010) for classes T and X. However, these did not appear representative
of all asteroids: the albedo of Bennu, classified as a B-type asteroid
(Bennu on Small-Body Database), differed significantly from the mean
albedo of its spectral class. Bennu's geometric albedo is listed in the
Small-Body Database as 0.044, while DeMeo and Carry (2013) gives the
mean albedo of the B-class as 0.14 + 0.04. Instead of using the mean
albedo of each spectral class for the samples belonging to it, the geo-
metric albedos were pulled randomly from a uniform distribution. The
minimum and maximum limits for the random albedos broadly followed
the minimum and maximum of the mean albedos retrieved from DeMeo
and Carry (2013) and Ryan and Woodward (2010), with minimum al-
bedo being 0.01, and maximum 0.40. These are listed along with other
minimum and maximum parameter values of data generation in Table 1.

The single-scattering approximation central to the Lommel-Seeliger
model of reflection is not well suited for brighter surfaces (Shepard,
2017). In fact, the single-scattering albedos in our model often signifi-
cantly exceed the physical limit of 1, resulting in surface elements that
reflect more light than is incident on them. While this would seem
alarming, it is roughly equivalent to having a surface with an albedo of 1
closer to the Sun where there is more incident light to reflect. The form of
Lommel-Seeliger model is also only applicable to flat surfaces, which
asteroid surface regolith is not, and it does not take into account the
opposition surge or other effects related to the phase angle of the
observation.

While the data generation model makes many simplifications, it ap-
pears to describe the problem of overlapping reflection and thermal
emission accurately enough: when a neural network is trained using
generated data, the network can produce useful predictions from real,
measured data. The data generation model also has merit in easy
implementation and low computational cost. The simplicity of the model
allows the data to be generated in a reasonable time on a comparatively
low-end computer. Generating the dataset utilized in this study took

Table 1
Minimum and maximum parameter values used in generating the training and
validation data.

Parameter T [K] € d. [au] P 6;[°1 6.[°]
Min. 300 0.20 0.797 0.01 0 0
Max. 441 0.99 1.456 0.40 89 89
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approximately half an hour using a consumer-grade laptop.

As data from Bennu was selected for testing the model, cases present
in the training data were constrained to fit the conditions on Bennu.
Though Bennu is a well characterized body, we used only its orbital
characteristics for limiting the data generation parameters. Bennu's
perihelion and aphelion (approx. 0.897 and 1.356 au, respectively,
retrieved from the Small-Body Database (Bennu on Small-Body Data-
base)) were used for the minimum and maximum heliocentric distances
when generating reflected radiances. To account for approximation er-
rors in our models, a margin was added to the range of distances by
subtracting 0.1 au from the perihelion and adding 0.1 au to the aphelion.
A maximum value for temperature was calculated from the minimum
heliocentric distance by finding the maximum temperature of an object
placed at that distance from the Sun, when the object is in equilibrium
with sunlight. The temperature of such an object can be calculated using
the following equation (Hapke, 2012):

T = [(1 — A)L,(ds )cos 6; /ec] ™. @

Here A is the Bond albedo of the object: the fraction of incident elec-
tromagnetic radiation that is scattered into space upon interaction with
the body, integrated over all wavelengths and directions. I(d) is the
incident solar irradiance from all wavelengths at the heliocentric dis-
tance of d;, 6; is the incidence angle of sunlight, ¢ is the emissivity of the
object, and o is the Stefan-Boltzmann constant. To find the maximum
temperature, we consider the subsolar temperature Ts; where 6; = 0, and
treat the object as a perfect blackbody with A = 0 and ¢ = 1. This sim-
plifies the expression for the temperature to

T = [I?)(db)/”]lﬁ- (8

The incident irradiance was found by taking its value near Earth at 1 au
(1361 W/m? (Kopp and Lean, 2011)) and scaling it with the inverse
square law similar to Eq. (3) used for spectral irradiances. For Bennu's
perihelion with the subtracted margin of 0.1 au, calculation using Eq. (8)
yielded a maximum temperature of 441 K.

To find a suitable value for the minimum temperature, the data
generation model was used to evaluate how surface temperature affects
the radiance caused by thermal emission in an example case. The per-
centage of thermally emitted radiance out of total detected radiance at
the wavelength channel closest to 2.45 pm was modeled at 1 au helio-
centric distance with temperatures running from 250 K to 350 K. The
radiances were modeled with a standard viewing geometry of 30° inci-
dence angle and 0° emission angle, and three values of geometric albedo,
0.02, 0.05, and 0.08. Emissivities of the three modeled surface materials
were calculated from the albedo values through Kirchhoff's law (Modest,
2013):

g(0) =1-1"(9), )

where ¢'(0) denotes directional emissivity with emission angle of 8, and
r'=(0) denotes directional-hemispherical reflectance with incidence angle
of #. The directional-hemispherical reflectance of a Lommel-Seeliger
surface can be found from the single-scattering albedo w as (Shepard,

2017):
1—cosfln (14— (10)
— COSs n m .

The single-scattering albedo can be calculated from the geometric albedo
using Eq. (5).

A plot of the results for the example case can be seen in Fig. 1,
showing the percentage of thermal emission as a function of temperature.
Based on the figure, the temperature of 300 K was set as the minimum for
the training data. At this temperature the thermal contribution was
approximately one percent in the most extreme case of 0.02 albedo.
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Fig. 1. Percentage of thermal emission out of total detected radiance at 2.45 pm
wavelength, presented as a function of surface temperature. Three example
cases with different geometric albedos p were modeled at 1 au heliocentric
distance, with 30° incidence angle and 0° emission angle.

The workflow for creating the radiance datasets for training and
validation is illustrated in the diagram of Fig. 2. Creation of the dataset
began with shuffling the reflectance dataset and splitting it into training
and validation sets, with 90% of the available 2200 spectra used for
training, and 10% for validation. Next, each of the normalized spectra
was “un-normalized” with five different random values of geometric al-
bedo pulled from a uniform distribution, giving five spectral geometric
albedos from each normalized reflectance. In total this yielded 9900
spectra used for creating training data and 1100 spectra for test data. A
vector of temperatures was then created, running from the minimum of
300 K to the maximum of 441 K, with a step of 1 K. For each temperature,
3960 training radiances and 440 validation radiances were created ac-
cording to Eq. (1), simulating the reflected and thermally emitted radi-
ances separately and summing them. The procedure of creating training
samples and validation samples differed only in the number of samples
per temperature value, and in the used pool of spectral geometric
albedos. Gaussian noise with a mean value of 0 and standard deviation of
0.0001 was generated and added to each sum radiance spectrum; this
was done to make sure there were no identical samples in either dataset,
and to make the neural network robust against small amounts of noise in
the input spectra. In total the generated data amounted to 558 360 ra-
diances for training and 62 040 radiances for validation, and their cor-
responding ground truth temperatures.

Data used in testing the model consisted of measurements of the
asteroid Bennu, recorded with the OVIRS instrument (Reuter et al., 2018)
of the OSIRIS-REx mission. OVIRS is a point spectrometer with a wave-
length range of 0.4 pm—4.3 pm, calibrated to record spectral radiances.
During the mission, this instrument was used in a whiskbroom configu-
ration, sweeping the field of view over the asteroid to map its surface
properties. In the paper that introduced OVIRS, Reuter et al. (2018), the
correction for thermal emission was mentioned to rely on temperature
evaluations produced with a longer wavelength instrument, OTES
(Christensen et al., 2018). The data we used for this study is described in
detail in Simon et al. (2020), where the depiction of the thermal
correction is different from the earlier publication. The correction began
with trial runs for five competing methods, conducted using multiple
large datasets from OVIRS. The best-performing method modeled the
reflected spectral radiance by approximating the reflectance of Bennu as
a linear continuum with a slope defined by fits to data from Bennu. The
reflected radiance produced using this approximation and scaled to
match the observed spectral radiance was then subtracted from the
observed spectrum, leaving an approximation for the thermally emitted
radiance. Next, 325 thermal spectral radiances were generated using
Planck's law with temperatures ranging from 150 K to 475 K, with a step
of 1 K. Each of these was fitted to the approximated thermal radiance
spectrum using a scaling factor as a fitting parameter. The final thermal
radiance spectrum was selected among the 325 spectra by minimizing a
criterion for the goodness of fit. Besides the thermally emitted spectral
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Fig. 2. Workflow for creating the training and validation datasets.

radiance, the method yielded an estimation for the surface temperature,
and an emissivity-like parameter with directional effects of the emitted
radiance built into it. A more thorough description of the correction can
be found in the supplementary materials of Simon et al. (2020).

The data for each observation comprised uncorrected spectral radi-
ance, thermal tail spectral radiance, corrected spectral radiance (with the
thermal tail subtracted), surface temperature, and emissivity. The data
originated from three local times on Bennu, namely 10:00, 12:30, and
15:00, and were grouped by the time of observation. In some of the
measurements, the sensor's field of view was not pointing toward Bennu.
These measurements were identified and discarded by setting a threshold
value for spectral radiance integrated over the wavelengths, calculating
the integrated radiance for all uncorrected radiances, and discarding any
measurement that fell below the threshold. The spectral radiances of the
surviving measurements were plotted and manually examined for bad
fits. In some samples, something appeared to have gone wrong when a
continuous spectrum was created by stitching together spectra from
sensors with different wavelength ranges. This manifested as a region of
higher radiance between approximately 0.7 ym and 1.1 pm, with an
extremely sharp rise and drop at the ends of this range. Measurements
where this behavior was detected were also discarded, leaving in total
1219 data points for testing. These were made compatible with the
correction method by converting the spectral radiances to the unit W/
(m? sr pm) and interpolating them to match the wavelength vector of the
training data.

If our correction method were to be used for real data, it could
encounter temperatures lower than the minimum present in the training
data. To test how the neural network behaves with such samples, another
synthetic test dataset was created. As in previous data generation, the
modeled temperature values were created as a vector running from a
minimum value to a maximum with a step of 1 K: only the minimum
value was changed from the previous 300 K-150 K. The number of
generated samples per temperature value was adjusted from 440 to 220

to keep the total number of created samples roughly the same. In total,
this data comprised 64 020 samples.

2.2. Network architecture and implementation

Generating the data, implementing, training, and testing the deep
learning model, and all other calculations were performed using Python
3.9.7 (Python 3.9.7 documentation). The model was built using Ten-
sorFlow (Abadi et al., 2015) with its Keras framework (Chollet et al.,
2015). The optimal architecture for the model was determined with the
Bayesian optimizer of KerasTuner (O'Malley et al., 2019), a hyper-
parameter optimization tool built for Keras.

The input data comprised spectral radiances with 200 wavelength
channels, setting the input layer to be 200 nodes. The output was likewise
determined by the context to be one node, for the predicted temperature
value. Hidden layers of the network consisted of a block of 1D con-
volutional layers followed by a block of fully connected layers. A flatten
layer was placed between the two blocks to render the output of the
convolution compatible as an input to the following fully connected
layer. The convolution block was set to consist of four layers in total, with
filter counts of 128, 64, 32, and 16. Kernel width for the convolution
operations was four, and padding was used to keep the output of each
convolution the same size as the input. For the fully connected block, the
optimization yielded a structure of nine layers with descending node
counts from 1024 to 4, each layer halving the number of nodes of its
predecessor. The activation function for all layers, excepting the output
layer, was the rectified linear unit (ReLU) (Nair and Hinton, 2010). An
illustration of the network architecture can be seen in Fig. 3.

The network was trained with a minibatch size of 32. The used
optimizer was Keras's implementation of Adam (Kingma and Ba, 2017)
with a learning rate of 5 x 1075, keeping other parameters of the opti-
mizer at their preset values. The loss for each training output was
calculated with Keras's native mean absolute percentage error (MAPE)
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Fig. 3. Architecture of the used neural network.

loss function. The network was initially set to train for 1000 epochs in
total, but a plot of training and validation loss history revealed overfitting
after epoch 29: thus, the weights from this epoch were selected as the
final weights of the network. The training was conducted using a single
NVIDIA Tesla P100 graphics processing unit (GPU), and the 29th epoch
was completed after 35 min of training.

2.3. Testing

The trained neural network was tested with three datasets: the syn-
thetic validation data used during training to monitor network perfor-
mance and generalizability, real OVIRS data from Bennu, and another
synthetic dataset with a broader temperature range.

The testing procedure was identical for all three datasets. First, the
whole dataset was fed to the network using Keras's evaluate method, and
the loss and total prediction time for the dataset were recorded. Next, the
network was used to predict a temperature for each radiance spectrum of
the dataset. The temperature was used to produce a prediction for ther-
mally emitted spectral radiance according to Eq. (6). The emissivity value
used in the calculation was the mean emissivity of the produced synthetic
data, 0.595. Subtracting the predicted thermal radiance spectrum from
the input spectrum yielded a prediction for reflected radiance: a spectral
radiance corrected for thermal tail using the network's temperature
prediction. Both ground truth and predicted reflected radiances were
turned into normalized reflectance spectra by dividing them by the solar
spectral irradiance, and then normalizing both so, that the reflectance at
0.55 pm wavelength was 1.

To determine how successful a correction was, the corrected spectra
were compared with ground truth. Comparisons were also made for the
uncorrected spectra, to give context to the readings calculated for cor-
rected points. The similarity of spectra was quantified with the metric of
spectral angle, defined for two vectors x and y as (Kruse et al., 1993)

o1 (&)
[l -1y

The spectra are treated as vectors in N-dimensional space, where N is the
number of spectral channels. The spectral angle calculates the angle
between the two vectors, ignoring possible differences in their magni-
tudes. In the case of spectra, this means that only relative differences of
channels, i.e. the spectral shapes, are compared.

All test calculations, including using the neural network to make
predictions, were carried out on a Dell Latitude 5420 laptop equipped
with an Intel Core i7-1165G7 8-core central processing unit running at
2.80 GHz clock speed.

an

3. Results

Producing temperature predictions with the trained neural network
was quite fast. For the synthetic validation data comprising 62 040
samples, the total elapsed prediction time was 34.1 s, making the

prediction time per sample approximately 0.5 ms. Temperature pre-
dictions for the Bennu data were made in three batches, each corre-
sponding to a local time when the measurements were made.
Computation times for these predictions were slightly shorter, with a
mean time per sample of approximately 0.4 ms.

Fig. 4 shows plots of temperature predicted by the neural network as a
function of ground truth temperature for both synthetic validation data
and test data from Bennu. The synthetic data is limited to the range of
ground truth temperatures on Bennu. Predictions made from synthetic
data are worse for samples of lower temperature. When the temperature
is lower, there is less thermal radiance in the NIR wavelengths. The lower
thermal contribution is more readily “drowned out” by reflected radia-
tion, and the network can not properly quantify it in most of the synthetic
samples. As a result, the network predicts for the ambiguous cases tem-
peratures leaning toward the mean temperature of the training data,
resulting in values higher than ground truth values. The same issue is not
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Fig. 4. Predicted temperatures as function of ground truth temperatures, for
both synthetic validation data and test data from Bennu. The red lines corre-
spond to an ideal result. The black lines show the mean predicted temperature
for each ground truth temperature, and the shadows around them show the
standard deviations of the predictions.
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present in the Bennu results, where the predictions for lower ground
truth temperatures are not markedly worse than for higher temperatures.
Compared to many of the training samples, data from Bennu are not as
much affected by reflected radiation hiding the thermal component.
Some temperatures predicted from Bennu data are lower than 300 K, the
lower limit temperatures present in the training data. This points to
differences between the training data and the test data from Bennu,
which is to be expected. The rudimentary simulator used for creating the
training samples can not accurately reproduce the complex real-world
phenomena of reflection and emission from the surface of an asteroid.

Normalized reflectance spectra were calculated from both uncorrec-
ted and predicted reflected radiances, dividing them by the solar spectral
irradiance and normalizing the result so that the reflectance at 0.55 pm
equaled unity. Fig. 5 shows four results of spectral reflectance, two from
synthetic data and two from Bennu data. In Fig. 5(a) the result is a suc-
cessful correction from synthetic data: the predicted temperature differs
from ground truth by 9.4 K, and the emissivity by 0.30. Still, the pre-
dicted reflectance conforms closely to the ground truth spectrum, with a
spectral angle of 0.0003. In Fig. 5(b) we see the result of a less successful
correction, where the temperature was predicted 16.3 K too high, and the
emissivity missed its ground truth value by 0.31, resulting in a spectral
angle error of 0.0149. The applied correction lowered the reflectance
values in the NIR wavelengths too much, and the reflectance values for
those wavelengths fell below the ground truth.

Fig. 5(c) shows a successfully corrected reflectance from Bennu data.
The temperature prediction differed from the ground truth by only 1.8 K,
and the emissivity by 0.09, giving a spectral angle error of 0.0010. A
result from an unsuccessful correction is seen in Fig. 5(d), where the
corrected spectrum is close to the uncorrected one. In this case the pre-
dicted temperature was 22.1 K too low, resulting in a too small thermal
radiance. While the emissivity was correct, the temperature error caused
a spectral angle error of 0.0100.

In some cases, the errors in temperature and emissivity predictions
may also compensate for each other. If the temperature prediction is
lower than the ground truth value, but the emissivity is higher than it
should be, the predicted thermal radiance can come close to the ground
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truth spectrum. The same applies to cases where the temperature is
predicted too high and the emissivity too low. On the other hand, the
error in predicted radiance can be amplified if predictions of temperature
and emissivity err in the same direction, i.e., both temperature and
emissivity are either too high or too low.

Spectral angle errors of all reflectance predictions from the synthetic
validation data and Bennu data are presented in Fig. 6. To improve the
readability of the figures, some points of the synthetic data with larger
errors in Fig. 6(a) were cropped out of the view. In both figures, the errors
of most corrected points are smaller than those of uncorrected points.
While the temperature predictions of synthetic samples with tempera-
tures lower than 320 K were systematically too high, the error does not
appear to propagate to reflectance predictions: most points are close to
the ideal results of 0, with some outliers throughout the temperature
range. The results from Bennu data show mostly similar behavior, with a
majority of the corrected points close to 0. Near the temperature of 330 K
some of the points show larger errors, and above 330 K the errors in
general seem to increase. In general, the results for Bennu data are worse
than for synthetic data.

Fig. 7 shows the predicted temperatures, an example reflectance
correction result, mean spectral reflectances, and spectral angle errors of
all reflectances for the broader temperature range of synthetic data, from
150 K to 441 K. As seen in the Bennu temperature range predictions of
Fig. 4, the neural network is not capable of accurately predicting temper-
atures lower than approximately 320 K. Under 300 K the network appears
to correctly recognize that the temperature is too low to produce signifi-
cant amounts of thermal radiation. However, for most of the points the
predicted temperature is not the lowest the network has encountered
during training, 300 K. Rather, the predictions are centered around
approximately 320 K. Interestingly, none of the predictions go below 300
K, unlike with some points of the Bennu data, seen in Fig. 4(b). Temper-
ature predictions also seem to increase in error at the highest tested tem-
peratures, showing lower values than ground truth. This could be caused
simply by difficulty in predicting for the edges of the training data, sug-
gesting that the maximum temperature of the training data should be
higher than is likely to be encountered in real asteroid measurements.
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Fig. 6. Spectral angles between corrected reflectance spectra and ground truth,
and the same from uncorrected data for comparison.

Fig. 7(b) shows an example reflectance from a low temperature: the
predicted temperature missed the ground truth by 93 K, and the emis-
sivity by 0.29. However, the original thermal radiation was virtually
nonexistent at NIR wavelengths, and the uncorrected and ground truth
spectra overlap almost completely. The corrected spectrum is likewise in
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agreement with the ground truth, indicating that the subtracted thermal
radiance was also very small.

While the network's temperature predictions for over half of the
validation samples were far from the ground truth values, this did not
affect the predictions of normalized reflectance very much, as seen in
Fig. 7(c). The mean spectrum for corrected data follows the ground truth
accurately, whereas uncorrected reflectance deviates strongly from it.
For the purpose of correcting spectra for thermal emission, accurate
predictions for the lower temperatures may not be needed: the emission
to correct for is not obtrusive if the temperature is low. However, if the
predicted temperature is much higher than the ground truth, applying
the correction will result in an erroneous reflectance. The corrected mean
reflectance spectrum following the ground truth quite accurately could
also indicate that averaging the predictions of some samples could
improve the results of corrections. As Fig. 7(a) shows, the predictions for
each ground truth temperature are found both above and below the ideal
result, yet the average prediction for higher temperatures is close to the
ground truth.

Fig. 7(d) shows the spectral angle errors for all corrected and un-
corrected points of the broader temperature range synthetic dataset.
Apart from some noise, which is to be expected with a neural network,
the corrected points below 300 K have mostly low errors. In very high
temperatures over 400 K, the errors of corrected points rise significantly.
This is caused by the erroneous temperature predictions in the same
range, visible in Fig. 7(a). In high temperatures, a small error in a tem-
perature prediction will sway the corrected spectrum more significantly.

4. Discussion

Results produced by the neural network were overall promising. For
temperature predictions most of the errors occurred with lower tem-
peratures, where the thermal emission is not as high at NIR wavelengths,
and thus more difficult to characterize. For higher temperatures, the
mean of predictions for each temperature matched the ground truth well,
but deviation of the predictions from the mean was quite large
throughout the temperature range.

While many of the temperature predictions were not ideal, using the
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temperatures to correct spectral reflectances yielded encouraging results.
The systematic errors seen in temperature predictions of synthetic low-
temperature samples were not visible in reflectance corrections made
with the same temperature predictions. It appears that even somewhat
inaccurate temperature predictions can be used to correct NIR observa-
tions for thermal emission. Results from Bennu data were not as good as
from synthetic data, pointing to differences between the two datasets.

Some outliers with large errors are present in predictions of both
temperature and reflectance. This is likely to happen with a method
based on a neural network. One way to detect these outliers could be to
compare each temperature prediction to the mean of the predictions of
neighboring pixels. Averaging the predictions of neighboring pixels
could also be used to improve the deviation of the results, albeit at the
cost of spatial resolution.

One large source of errors for reflectance predictions is the need for an
emissivity value in addition to the temperature. Even with a temperature
prediction close to the ground truth value, an error in emissivity can
compromise the radiance prediction. Our neural network can not
currently produce emissivity estimates, unlike the other methods for
retrieving thermal properties we discussed in the introduction of this
work. For the emissivity of all radiance predictions, we used simply the
value halfway between the minimum and maximum emissivities of the
training data. During the development of the neural network several
architectures that would also predict the emissivity from the input
radiance were tried, but with no results to speak of. Each network ended
up to the same solution we later used, converging to predict the same
emissivity for all inputs. Correct emissivity predictions could signifi-
cantly improve the results of both radiance and reflectance predictions.
Another likewise failed attempt to predict both temperature and emis-
sivity was setting the output of a network to be the thermally emitted
spectral radiance. The temperature and emissivity could then be evalu-
ated by fitting the output to Planck's law. However, the output spectra of
such networks were both erroneous and noisy.

The relatively good performance of the neural network with Bennu
data can be partly attributed to Bennu being included in the original
MITHNEOS dataset (Binzel et al., 2019), from which the used asteroid
reflectances are derived. In this sense the training data has been
“contaminated”: it includes points possibly quite similar to the test data.
In a typical machine learning application, this would indicate a badly
designed experiment. However, we would argue that the reflectance of
Bennu included in the training data generation is not exactly the same
data, the test data being disk-resolved, and the training reflectances
disk-integrated. Another argument would be that any asteroid deemed
interesting enough for a spacecraft to visit it would likely have been
measured by a previous campaign of disk-integrated observations. This is
also true for Didymos, the target of the ESA Hera mission: like Bennu,
Didymos was included in the MITHNEOS data.

Another reason why results with the OSIRIS-REx OVIRS data were
quite good even with lower temperatures may lie in Bennu's low albedo.
With low amounts of reflected light, the thermal radiance becomes more
prominent and may be easier for the neural network to detect and
characterize. Conversely, with lower amounts of reflected light, smaller
errors in evaluating the thermal radiance will impair the correction of
reflectances. Even if the temperature predictions were without errors,
differences in emissivity could skew the predicted spectra to deviate from
the ground truth.

Tests with Bennu data were frequently used when evaluating the
performance of different network designs. In this sense the network was
designed to work with the test data, another common pitfall in devel-
oping a machine learning solution. Given the rather fundamental dif-
ferences between the synthetic training and validation data and the real
test data, we saw using the test data this way as necessary. Nevertheless,
this makes the neural network suspect of overfitting to the test data.

While the method presented here did work quite well with data from
Bennu, several factors call for more testing. Bennu is not representative of
all other asteroids, and results from only one asteroid do not provide
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conclusive evidence. The neural network architecture was also in a sense
designed to work with the test data, and it may not perform as well with
other data. It is likewise important to consider the accuracy of the OVIRS
data used for our tests. While the thermal correction for those measure-
ments is likely more robust than the method presented here, the Bennu
data is still corrected with a relatively simple model, and the data
considered as ground truth in our tests could contain errors. The tests
performed here then do not sufficiently prove the performance and
generalizability of the method, and it should be tested with measure-
ments from another asteroid. Unfortunately, to our knowledge data that
is suitable for further testing does not yet exist.

ESA's upcoming Hera mission will provide data that could be used to
conduct additional tests on the method presented in this study. The
ASPECT imaging module on-board Hera's companion CubeSat Milani will
record approximately continuous spectra from 0.5 pm to 2.5 pm, near the
spectral range of our training data. Hera itself will map the surface
temperatures of Didymos and Dimorphos with a thermal infrared imager
(TIRI) (Michel et al., 2022). Applying the temperature evaluation method
presented in this study to data from ASPECT and comparing the results to
temperature maps produced by TIRI would provide more information on
how well this method performs with an asteroid very different from
Bennu. For additional comparison, the data could also be corrected using
the approach taken for OVIRS data of Bennu in Simon et al. (2020).

In its current state, the neural network may not produce correct
predictions for the temperatures of shadowed regions, such as those
behind larger boulders, or, in the case of twin bodies such as Didymos,
the shadow cast by a satellite. Such cases were not intentionally repre-
sented in the training data, but some samples with a low albedo, large
heliocentric distance, and high temperature may come close. Before
applying the neural network to data from Didymos, the neural network
has to be retrained using data more representative of the conditions on
Didymos, and samples that simulate shadowed regions could also be
included. The network could also be familiarized with fresh regolith, as
such material was likely uncovered by the DART impact on Dimorphos.
Samples analogous to this could possibly be created by simulating re-
flected radiances using spectral reflectances of meteorites, though
changes caused by atmospheric shock and erosion may have rendered
meteorite samples unrepresentative of asteroid regolith.

The model used for producing the training data could be described as
rather crude and simplistic, in certain aspects even unphysical. As
mentioned in Sec. 3.1, the Lommel-Seeliger model of reflection is not
suitable for brighter surfaces, or for surfaces that are not flat. Addition-
ally, the model does not consider phase reddening or the opposition
surge, other than what may have been present in the used asteroid re-
flectances. Using a more sophisticated model could improve performance
with real data, as it would bring the training data closer to reality. A fairly
simple modification would be to exchange the Lommel-Seeliger model
for another disk function that is better suited for modeling both dark and
bright surfaces. One candidate for this would be a parameterless version
of the Akimov disk function (Shkuratov et al., 1999, Eq. 29). Migrating to
this model would introduce dependence on the phase angle of a mea-
surement, which could be further accommodated by adding a separate
phase function to the pipeline for producing reflected radiances. We
suspect the use of the Lommel-Seeliger model was not an issue when
testing the network with data from Bennu, an asteroid with a very dark
surface. The same model was also utilized for photometric correction of
OVIRS measurements in Simon et al. (2020). However, complications
could arise when working with lighter asteroids, such as Didymos.

Another simplistic aspect of the data generation is simulating the
thermal emission: in our model this has no directional dependence, other
than a completely random one from the emissivity. The directional ef-
fects of thermal emission are then not tied to the emission angle. The
model used for producing thermal radiance spectra also uses an emis-
sivity that is not wavelength dependent, another arguably dubious
assumption. While a constant emissivity appears a valid approach for
Bennu, it could lead to errors in the case of other asteroids if strong
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spectral signatures are expected to be found in the NIR wavelengths.
Improving the data generation model while keeping it computationally
cheap enough to produce, say, one million data points of a 1000 x 1000
pixel spectral image in a reasonable time would most likely improve the
performance of a network trained with this data.

This study aimed to produce a correction method for disk-resolved
spectral radiance measurements. However, since the created neural
network takes a single spectrum as an input, the same approach could be
used to correct disk-integrated observations. This would naturally
require the network to be retrained with appropriate data, and such a
change to the application and the data would most likely also demand re-
optimizing the network architecture. As surveys of disk-integrated
asteroid measurements have produced data from a wide variety of as-
teroids with different orbits and spectral properties, the training data
could be gathered from actual measurements instead of simulations. In
disk-integrated observations, the thermal emission may also not be suf-
ficiently described by just one temperature value. The temperature is
guaranteed to vary across the surface of the observed asteroid, and the
observed thermal emission originates from multiple locations with
different temperatures. A similar problem could be encountered if this
method is applied to data from Milani's ASPECT imaging module, as the
longest wavelength channels of this instrument will have a large field-of-
view (Michel et al., 2022).

Another expansion for the method could be altering the wavelength
range from the current 0.45-2.45 pm, which was chosen largely due to it
being the wavelength range of the asteroid reflectance dataset used in
generating the training data. Including longer wavelengths would pre-
sumably lead to improvements in the performance of the network,
especially with lower temperatures. With the current wavelength range,
our method is better suited for near-Earth asteroids, which are typically
warmer than bodies of the main asteroid belt. If the wavelength range
was extended far enough, preferably up to 5 pm, the performance of the
network could be tested with data from Dawn and Rosetta. The asteroids
targeted by these missions, Ceres, Vesta, Steins, and Lutetia, did not have
prominent thermal emission in wavelengths shorter than 3.5 pm (Raponi
et al., 2019b, 2019a; Tosi et al., 2014; Leyrat et al., 2011; Keihm et al.,
2012). The caveat in moving to other wavelengths is the requirement for
approximately continuous spectral reflectances of asteroids in the desired
wavelength range, needed to produce suitable training data. These re-
flectances should also be corrected for thermal excess in the best possible
way.

One experiment requiring no new data would be to exclude a number
of shorter wavelength channels and attempt to reach similar results. This
would lower the requirements for input data, as typically achieving a
continuous spectrum from 0.45 pm to 2.45 pm would require fusing
together spectral data from multiple sensors. If something goes wrong
with this fusion, the resulting spectrum can have extremely sharp drops
and rises. Such spectra could confuse a convolution neural network that
has only seen smooth features, resulting in an erroneous prediction.

Producing temperature predictions with the neural network was fast,
with a 0.5 ms prediction time per sample. For Milani's ASPECT where the
NIR instrument is a point spectrometer, this efficiency is not critical, but
future missions could employ similar instruments with a frame-based NIR
imager. This would greatly increase the number of observations that need
to be corrected for thermal emission. If such an instrument were to have
the same number of pixels as ASPECT's shorter infrared channels, 640 x
512, the total number of samples to be corrected would be 327 680 for
every captured spectral image. Using the temperature prediction method
of this study, this would mean a quite manageable computation time of
approximately 2.8 min would be needed to produce the temperature
predictions.

The speed at which predictions are made could be further increased,
possibly quite significantly. The network structure was optimized only
for the accuracy of the results, with no thought given to how heavy the
computations would be. As a result the network is relatively large, and
could likely be streamlined. Further performance improvements could be
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achieved by implementing the trained network in a lower-level pro-
gramming language inherently more efficient than Python, such as C.
Finally, the predictions were made by running the calculations on a
commercial-grade CPU. Using a GPU, which is much better suited for
neural network computations, could bring the computation time down
substantially. Space-grade GPUs are to our knowledge currently not
available, but the popularity of neural networks and other computational
methods relying on the parallelization capabilities of GPUs has caused an
incentive to bring these components to spacecraft on-board computers
(George and Wilson, 2018; Bruhn et al., 2020).

Reducing the computational cost of a correction method is not a
priority for missions where the bulk of the computations are carried out
on Earth where computational power is not scarce. In the case of Cube-
Sats, the data transmission rate is limited by the low power of the
transmission equipment. Missions employing small spacecraft could
benefit from processing the data further on the spacecraft's on-board
computer and sending only ready data products back to Earth. The on-
board computer of a small satellite is naturally quite limited in its
computational power, and thus the computations to be run on it should
be as efficient as possible.

It is to be noted that processing instrument data on-board a spacecraft
also has its dangers. In some cases, this practice can destroy information
that could be detected from the raw data with other processing methods.
One example of this caveat comes from the analysis of data produced by
the Mars Advanced Radar for Subsurface and Ionosphere Sounding
(MARSIS) instrument on the Mars Express spacecraft. In this case data
processing steps executed on-board the spacecraft before downloading
the data to Earth hid evidence of subglacial liquid water deposits under
the south pole of Mars (Orosei et al., 2018). Only bypassing the on-board
processing and downloading raw data allowed this discovery to be made.

Another concern about the viability of on-board processing is related
to the calibration of instruments. While a rigorous calibration procedure
is naturally carried out before launch, for some instruments errors in the
calibration can become apparent only after months or even years of
operation. If this were to happen, and our method of temperature eval-
uation was to be applied to such data, the produced temperatures could
well be erroneous. The error would then propagate to spectral reflec-
tance, which could in turn lead to false results of surface composition. If
only the end result of the data processing, the compositional maps, are
downloaded to Earth, errors in instrument calibration and their effects
will not be found. To alleviate these concerns, we suggest periodically
downloading some samples of raw data to be processed under the su-
pervision of a human overseer. These samples could also be processed
with methods that are computationally more costly but are known to
return accurate results. Comparing results from such methods and from
the faster methods employed in computing on an OBC could highlight
errors in the on-board processing. Of course, these measures can not be
guaranteed to catch all possible errors.

Beyond computational efficiency, the appeal of the method devel-
oped in this study lies in the simplicity of its use. One can feed a spectral
radiance into the network and receive a prediction for surface tempera-
ture, without adjusting any parameters or providing an initial guess for
the temperature. The network should be trained again for each target
asteroid, but that also requires minimal prior knowledge of the properties
of the target: only the perihelion and aphelion distances are needed, and
the orbit of an asteroid must at any rate be known well to send a
spacecraft to it. A more general solution, a network that works as-is for all
asteroid missions without the need to retrain it would be more attractive,
but our tests gave worse results for such networks.

Unlike the method used for estimating thermal properties of Vesta in
Tosi et al. (2014), our approach does not inherently allow setting con-
straints on the estimated temperature. Instead, the temperature pre-
dictions produced by the network could be clamped to stay within a
certain range, with a natural maximum value provided by the blackbody
temperature. Information about the target asteroid could also be
included before training the network, during the data generation. If the



L. Lind et al.

target is known to have a certain albedo, this value could be used for
selecting the minimum and maximum albedos for training and validation
data, as well as for maximum temperature evaluation. However, going
too far when tuning the data to suit a particular target asteroid may result
in more errors if the target happens to not conform to the assumptions
made from previous disk-integrated measurements.

5. Conclusions

In this study, a convolution neural network was constructed and
trained to predict asteroid surface element temperature from disk-
resolved spectral radiance measurements of near-infrared radiation.
The temperature predictions were further used to approximate thermally
emitted spectral radiances, which were removed from the original
spectra to correct them for errors caused by thermal emission. The
network was trained and its performance validated during training using
synthetic data from a very rudimentary simulator also built during this
work. The trained network was tested with real observations of the
asteroid Bennu provided by the OVIRS instrument of the OSIRIS-REx
mission. To properly characterize the thermal emission, the network
would also have to predict a value for emissivity, but attempts at this
were unsuccessful.

While the neural network produced promising temperature predic-
tion results from both synthetic data and real measurements of Bennu, we
can not declare it ready for deployment in its current state. Testing the
network with only Bennu data does not give conclusive evidence for the
generalizability of the network performance. Tests with real data from
other asteroids would be required, but to our knowledge no real data
fitting the specifications for suitable test data exists other than that from
Bennu. ESA's upcoming Hera mission is planned to produce such data,
but not before 2026. Overall, the method for temperature prediction and
thermal correction developed in this study shows promise for missions
for which a longer wavelength instrument is not feasible and there is not
much prior knowledge of the target body. The method is also computa-
tionally efficient, allowing a more careful implementation of it to
possibly be run on the on-board computers of future nanosatellite
missions.
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