Bi-Sobolev Extensions
Koski, A., & Onninen, J. (2023). Bi-Sobolev Extensions. Journal of Geometric Analysis, 33(9), Article 301. https://doi.org/10.1007/s12220-023-01363-1
Published in
Journal of Geometric AnalysisDate
2023Discipline
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsCopyright
© The Author(s) 2023
We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling–Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling–Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.
Publisher
SpringerISSN Search the Publication Forum
1050-6926Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/183855352
Metadata
Show full item recordCollections
Additional information about funding
Open Access funding provided by Aalto University.License
Related items
Showing items with similar title or keywords.
-
Sobolev homeomorphic extensions from two to three dimensions
Hencl, Stanislav; Koski, Aleksis; Onninen, Jani (Elsevier, 2024)We study the basic question of characterizing which boundary homeomorphisms of the unit sphere can be extended to a Sobolev homeomorphism of the interior in 3D space. While the planar variants of this problem are ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ... -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p> -
Sobolev Extension on Lp-quasidisks
Zhu, Zheng (Springer Science and Business Media LLC, 2023)In this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.