Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type
Martini, A., Müller, D., & Nicolussi Golo, S. (2023). Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type. Journal of the European Mathematical Society, 25(3), 785-843. https://doi.org/10.4171/JEMS/1191
Julkaistu sarjassa
Journal of the European Mathematical SocietyPäivämäärä
2023Tekijänoikeudet
© 2022 European Mathematical Society
Let L be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin–Hörmander type and wave propagator estimates of Miyachi–Peral type for L cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with L and nondegeneracy properties of the sub-Riemannian geodesic flow.
Julkaisija
European Mathematical Society - EMS - Publishing House GmbHISSN Hae Julkaisufoorumista
1435-9855Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103914213
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was partially supported by the EPSRC Grant “Sub-Elliptic Harmonic Analysis”(EP/P002447/1). Part of the work was carried out during a two-month visit of the first-named author to the Christian-Albrechts-Universität zu Kiel (Germany), made possible by the generous financial support of the Alexander von Humboldt FoundationLisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
Stable reconstruction of simple Riemannian manifolds from unknown interior sources
de Hoop, Maarten V.; Ilmavirta, Joonas; Lassas, Matti; Saksala, Teemu (IOP Publishing, 2023)Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.