Näytä suppeat kuvailutiedot

dc.contributor.authorMartini, Alessio
dc.contributor.authorMüller, Detlef
dc.contributor.authorNicolussi Golo, Sebastiano
dc.date.accessioned2023-07-06T14:40:37Z
dc.date.available2023-07-06T14:40:37Z
dc.date.issued2023
dc.identifier.citationMartini, A., Müller, D., & Nicolussi Golo, S. (2023). Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type. <i>Journal of the European Mathematical Society</i>, <i>25</i>(3), 785-843. <a href="https://doi.org/10.4171/JEMS/1191" target="_blank">https://doi.org/10.4171/JEMS/1191</a>
dc.identifier.otherCONVID_103914213
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88295
dc.description.abstractLet L be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin–Hörmander type and wave propagator estimates of Miyachi–Peral type for L cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with L and nondegeneracy properties of the sub-Riemannian geodesic flow.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherEuropean Mathematical Society - EMS - Publishing House GmbH
dc.relation.ispartofseriesJournal of the European Mathematical Society
dc.rightsCC BY 4.0
dc.subject.otherspectral multiplier
dc.subject.othersub-Laplacian
dc.subject.otherwave equation
dc.subject.othersub-Riemannian manifold
dc.subject.othereikonal equation
dc.subject.otherFourier integral operator
dc.titleSpectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202307064423
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange785-843
dc.relation.issn1435-9855
dc.relation.numberinseries3
dc.relation.volume25
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 European Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoharmoninen analyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysomonistot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p28181
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.4171/JEMS/1191
jyx.fundinginformationThis research was partially supported by the EPSRC Grant “Sub-Elliptic Harmonic Analysis”(EP/P002447/1). Part of the work was carried out during a two-month visit of the first-named author to the Christian-Albrechts-Universität zu Kiel (Germany), made possible by the generous financial support of the Alexander von Humboldt Foundation
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0