dc.contributor.author | Martini, Alessio | |
dc.contributor.author | Müller, Detlef | |
dc.contributor.author | Nicolussi Golo, Sebastiano | |
dc.date.accessioned | 2023-07-06T14:40:37Z | |
dc.date.available | 2023-07-06T14:40:37Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Martini, A., Müller, D., & Nicolussi Golo, S. (2023). Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type. <i>Journal of the European Mathematical Society</i>, <i>25</i>(3), 785-843. <a href="https://doi.org/10.4171/JEMS/1191" target="_blank">https://doi.org/10.4171/JEMS/1191</a> | |
dc.identifier.other | CONVID_103914213 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88295 | |
dc.description.abstract | Let L be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin–Hörmander type and wave propagator estimates of Miyachi–Peral type for L cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with L and nondegeneracy properties of the sub-Riemannian geodesic flow. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | European Mathematical Society - EMS - Publishing House GmbH | |
dc.relation.ispartofseries | Journal of the European Mathematical Society | |
dc.rights | CC BY 4.0 | |
dc.subject.other | spectral multiplier | |
dc.subject.other | sub-Laplacian | |
dc.subject.other | wave equation | |
dc.subject.other | sub-Riemannian manifold | |
dc.subject.other | eikonal equation | |
dc.subject.other | Fourier integral operator | |
dc.title | Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202307064423 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 785-843 | |
dc.relation.issn | 1435-9855 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 25 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 European Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | harmoninen analyysi | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | monistot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28124 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28181 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.4171/JEMS/1191 | |
jyx.fundinginformation | This research was partially supported by the EPSRC Grant “Sub-Elliptic Harmonic Analysis”(EP/P002447/1). Part of the work was carried out during a two-month visit of the first-named author to the Christian-Albrechts-Universität zu Kiel (Germany), made possible by the generous financial support of the Alexander von Humboldt Foundation | |
dc.type.okm | A1 | |