Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type
Martini, A., Müller, D., & Nicolussi Golo, S. (2023). Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type. Journal of the European Mathematical Society, 25(3), 785-843. https://doi.org/10.4171/JEMS/1191
Published in
Journal of the European Mathematical SocietyDate
2023Copyright
© 2022 European Mathematical Society
Let L be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin–Hörmander type and wave propagator estimates of Miyachi–Peral type for L cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with L and nondegeneracy properties of the sub-Riemannian geodesic flow.
Publisher
European Mathematical Society - EMS - Publishing House GmbHISSN Search the Publication Forum
1435-9855Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/103914213
Metadata
Show full item recordCollections
Additional information about funding
This research was partially supported by the EPSRC Grant “Sub-Elliptic Harmonic Analysis”(EP/P002447/1). Part of the work was carried out during a two-month visit of the first-named author to the Christian-Albrechts-Universität zu Kiel (Germany), made possible by the generous financial support of the Alexander von Humboldt FoundationLicense
Related items
Showing items with similar title or keywords.
-
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
Stable reconstruction of simple Riemannian manifolds from unknown interior sources
de Hoop, Maarten V.; Ilmavirta, Joonas; Lassas, Matti; Saksala, Teemu (IOP Publishing, 2023)Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct ...