Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Jiayin
dc.contributor.authorZhou, Yuan
dc.date.accessioned2023-06-08T08:43:57Z
dc.date.available2023-06-08T08:43:57Z
dc.date.issued2023
dc.identifier.citationLiu, J., & Zhou, Y. (2023). A Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers. <i>Calculus of Variations and Partial Differential Equations</i>, <i>62</i>(5), Article 144. <a href="https://doi.org/10.1007/s00526-023-02484-9" target="_blank">https://doi.org/10.1007/s00526-023-02484-9</a>
dc.identifier.otherCONVID_183282866
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87555
dc.description.abstractWe establish a Rademacher type theorem involving Hamiltonians H(x, p) under very weak conditions in both of Euclidean and Carnot-Carathéodory spaces. In particular, H(x, p) is assumed to be only measurable in the variable x, and to be quasiconvex and lower semicontinuous in the variable p. Without the lower-semicontinuity in the variable p, we provide a counter example showing the failure of such a Rademacher type theorem. Moreover, by applying such a Rademacher type theorem we build up an existence result of absolute minimizers for the corresponding L∞-functional. These improve or extend several known results in the literature.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesCalculus of Variations and Partial Differential Equations
dc.rightsCC BY 4.0
dc.titleA Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202306083624
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0944-2669
dc.relation.numberinseries5
dc.relation.volume62
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber328846
dc.subject.ysovariaatiolaskenta
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00526-023-02484-9
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationThe first author is supported by the Academy of Finland via the projects: Quantitative rectifiability in Euclidean and non-Euclidean spaces, Grant No. 314172, and Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, Grant No. 328846. The second author is supported by the National Natural Science Foundation of China (No. 12025102 & No. 11871088) and by the Fundamental Research Funds for the Central Universities. Data sharing not applicable to this article as no datasets were generated or analysed during the current study. Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0