A Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers
Liu, J., & Zhou, Y. (2023). A Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers. Calculus of Variations and Partial Differential Equations, 62(5), Article 144. https://doi.org/10.1007/s00526-023-02484-9
Julkaistu sarjassa
Calculus of Variations and Partial Differential EquationsPäivämäärä
2023Tekijänoikeudet
© 2023 the Authors
We establish a Rademacher type theorem involving Hamiltonians H(x, p) under very weak conditions in both of Euclidean and Carnot-Carathéodory spaces. In particular, H(x, p) is assumed to be only measurable in the variable x, and to be quasiconvex and lower semicontinuous in the variable p. Without the lower-semicontinuity in the variable p, we provide a counter example showing the failure of such a Rademacher type theorem. Moreover, by applying such a Rademacher type theorem we build up an existence result of absolute minimizers for the corresponding L∞-functional. These improve or extend several known results in the literature.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0944-2669Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183282866
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
The first author is supported by the Academy of Finland via the projects: Quantitative rectifiability in Euclidean and non-Euclidean spaces, Grant No. 314172, and Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, Grant No. 328846. The second author is supported by the National Natural Science Foundation of China (No. 12025102 & No. 11871088) and by the Fundamental Research Funds for the Central Universities. Data sharing not applicable to this article as no datasets were generated or analysed during the current study. Open Access funding provided by University of Jyväskylä (JYU). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The rank-one theorem on RCD spaces
Antonelli, Gioacchino; Brena, Camillo; Pasqualetto, Enrico (Mathematical Sciences Publishers, 2024)We extend Alberti’s rank-one theorem to RCD(K, N) metric measure spaces -
Uniqueness of positive solutions to some Nonlinear Neumann Problems
Wan, Youyan; Xiang, Changlin (Academic Press, 2017)Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem ⎧ ⎨ ⎩ div (ya∇u(x, y)) = 0, x ∈ Rn,y > 0, lim y→0+yauy(x, y) = −f(u(x, 0)), x ∈ Rn, under general ... -
Optimization of the domain in elliptic variational inequalities
Neittaanmäki, Pekka; Sokolowski, J.; Zolesio, J. P. (University of Jyväskylä, 1986) -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
A two-phase problem with Robin conditions on the free boundary
Guarino Lo Bianco, Serena; La Manna, Domenico Angelo; Velichkov, Bozhidar (Les Éditions de l'École polytechnique, 2021)We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.