Näytä suppeat kuvailutiedot

dc.contributor.authorCoronetti, Andrea
dc.contributor.authorAlia, Ruben Garcia
dc.contributor.authorLucsanyi, David
dc.contributor.authorWang, Jialei
dc.contributor.authorSaigne, Frederic
dc.contributor.authorJavanainen, Arto
dc.contributor.authorLeroux, Paul
dc.contributor.authorPrinzie, Jeffrey
dc.date.accessioned2023-06-07T07:35:02Z
dc.date.available2023-06-07T07:35:02Z
dc.date.issued2023
dc.identifier.citationCoronetti, A., Alia, R. G., Lucsanyi, D., Wang, J., Saigne, F., Javanainen, A., Leroux, P., & Prinzie, J. (2023). Proton direct ionization upsets at tens of MeV. <i>IEEE Transactions on Nuclear Science</i>, <i>70</i>(4), 314-321. <a href="https://doi.org/10.1109/TNS.2022.3207877" target="_blank">https://doi.org/10.1109/TNS.2022.3207877</a>
dc.identifier.otherCONVID_156693008
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87502
dc.description.abstractExperimental mono-energetic proton single-event upset (SEU) cross-sections of a 65 nm low core-voltage static random access memory (SRAM) were found to be exceptionally high not only at low energies (< 3 MeV), but also at energies > 3 MeV and extending up to tens of MeV. The SEU cross-section from 20 MeV protons exceed the 200 MeV proton SEU cross-section by almost a factor of 3. Similarly, mono-energetic neutron cross-sections at 14 MeV are about a factor of 3 lower than the 20 MeV proton cross-section. Thanks to Monte-Carlo (MC) simulations it was determined that this strong enhancement is due to the proton direct ionization process as opposed to the elastic and inelastic scattering processes that dominate the SEU response above 3 MeV in other SRAMs. As shown by means of a detailed energy deposition scoring analysis, however, this does not appear to be caused by the critical charge of the SRAM being lower than the charge resulting from the average proton ionization through the linear energy transfer (LET). On the other hand, this is caused by high-energy δ-rays (> 1 keV) that can deposit their full kinetic energy within the sensitive volume (SV) of a cell despite their range being theoretically much longer than the characteristic size of the SV. Multiple scattering events are responsible for increasing the trajectory path of the δ-rays within the sensitive volume, resulting in a 6 fold increase in the probability of upset with respect to the sole electron ionization.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Nuclear Science
dc.rightsCC BY 4.0
dc.subject.otherprotons
dc.subject.otherrandom access memory
dc.subject.otherscattering
dc.subject.otherneutrons
dc.subject.othertrajectory
dc.subject.othersingle event upsets
dc.subject.otherproton direct ionization
dc.subject.otherdelta-rays
dc.subject.otherMonte-Carlo simulations
dc.titleProton direct ionization upsets at tens of MeV
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202306073572
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange314-321
dc.relation.issn0018-9499
dc.relation.numberinseries4
dc.relation.volume70
dc.type.versionpublishedVersion
dc.rights.copyright© Authors 2023
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber721624
dc.relation.grantnumber721624
dc.relation.grantnumber4000124504/18/NL/KML/zx
dc.relation.grantnumber101008126
dc.relation.grantnumber101008126
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/721624/EU//RADSAGA
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/101008126/EU//RADNEXT
dc.subject.ysoenergiansiirto
dc.subject.ysoionit
dc.subject.ysoionisoiva säteily
dc.subject.ysoliike-energia
dc.subject.ysomuistit (tietotekniikka)
dc.subject.ysoMonte Carlo -menetelmät
dc.subject.ysoneutronit
dc.subject.ysoprotonit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20914
jyx.subject.urihttp://www.yso.fi/onto/yso/p9015
jyx.subject.urihttp://www.yso.fi/onto/yso/p459
jyx.subject.urihttp://www.yso.fi/onto/yso/p16995
jyx.subject.urihttp://www.yso.fi/onto/yso/p12658
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
jyx.subject.urihttp://www.yso.fi/onto/yso/p15394
jyx.subject.urihttp://www.yso.fi/onto/yso/p12428
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/TNS.2022.3207877
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Space Agencyen
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuropean Space Agencyfi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramMSCA Innovative Training Networks (ITN)en
jyx.fundingprogramOthersen
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramMSCA Innovative Training Networks (ITN)fi
jyx.fundingprogramMuutfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundinginformationThis study has received funding from the European Union’s Horizon 2020 research and innovation programme under the MSC grant agreement no. 721624, from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008126 and from the European Space Agency (ESA/ESTEC) at the University of Jyväskylä under Contract 4000124504/18/NL/KML/zk.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0