Show simple item record

dc.contributor.authorFässler, Katrin
dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2023-05-30T06:11:55Z
dc.date.available2023-05-30T06:11:55Z
dc.date.issued2023
dc.identifier.citationFässler, K., & Orponen, T. (2023). Riesz transform and vertical oscillation in the Heisenberg group. <i>Analysis and PDE</i>, <i>16</i>(2), 309-340. <a href="https://doi.org/10.2140/apde.2023.16.309" target="_blank">https://doi.org/10.2140/apde.2023.16.309</a>
dc.identifier.otherCONVID_183337248
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87289
dc.description.abstractWe study the L2-boundedness of the 3-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz graphs in the first Heisenberg group H. Inspired by the notion of vertical perimeter, recently defined and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant coefficients oscΩ(B(q,r)). These coefficients quantify the vertical oscillation of a domain Ω⊂H around a point q∈∂Ω, at scale r>0. We then proceed to show that if Ω is a domain bounded by an intrinsic Lipschitz graph Γ, and ∫∞0oscΩ(B(q,r))drr≤C<∞,q∈Γ, then the Riesz transform is L2-bounded on Γ. As an application, we deduce the boundedness of the Riesz transform whenever the intrinsic Lipschitz parametrisation of Γ is an ϵ better than 12-Hölder continuous in the vertical direction. We also study the connections between the vertical oscillation coefficients, the vertical perimeter, and the natural Heisenberg analogues of the β-numbers of Jones, David, and Semmes. Notably, we show that the Lp-vertical perimeter of an intrinsic Lipschitz domain Ω is controlled from above by the p-th powers of the L1-based β-numbers of ∂Ω.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMathematical Sciences Publishers
dc.relation.ispartofseriesAnalysis and PDE
dc.rightsCC BY 4.0
dc.subject.othersingular integrals
dc.subject.otherRiesz transform
dc.subject.otherintrinsic Lipschitz graphs
dc.subject.otherHeisenberg group
dc.titleRiesz transform and vertical oscillation in the Heisenberg group
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202305303347
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange309-340
dc.relation.issn2157-5045
dc.relation.numberinseries2
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 MSP (Mathematical Sciences Publishers).
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoharmoninen analyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysopotentiaaliteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p18911
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.2140/apde.2023.16.309
jyx.fundinginformationFässler was supported by the Swiss National Science Foundation through project 161299 Intrinsic rectifiability and mapping theory on the Heisenberg group. Orponen was supported by the Finnish Academy through the project Quantitative rectifiability in Euclidean and non-Euclidean spaces, grants 309365 and 314172.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0