Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis
Zhu, Y., Liu, J., & Cong, F. (2023). Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 2438-2447. https://doi.org/10.1109/tnsre.2023.3277509
Julkaistu sarjassa
IEEE Transactions on Neural Systems and Rehabilitation EngineeringPäivämäärä
2023Oppiaine
TietotekniikkaTekniikkaSecure Communications Engineering and Signal ProcessingMathematical Information TechnologyEngineeringSecure Communications Engineering and Signal ProcessingTekijänoikeudet
© 2023 the Authors
The human brain can be described as a complex network of functional connections between distinct regions, referred to as the brain functional network. Recent studies show that the functional network is a dynamic process and its community structure evolves with time during continuous task performance. Consequently, it is important for the understanding of the human brain to develop dynamic community detection techniques for such time-varying functional networks. Here, we propose a temporal clustering framework based on a set of network generative models and surprisingly it can be linked to Block Component Analysis to detect and track the latent community structure in dynamic functional networks. Specifically, the temporal dynamic networks are represented within a unified three-way tensor framework for simultaneously capturing multiple types of relationships between a set of entities. The multi-linear rank-(L r ,L r ,1) block term decomposition (BTD) is adopted to fit the network generative model to directly recover underlying community structures with the specific evolution of time from the temporal networks. We apply the proposed method to the study of the reorganization of the dynamic brain networks from electroencephalography (EEG) data recorded during free music listening. We derive several network structures (L r communities in each component) with specific temporal patterns (described by BTD components) significantly modulated by musical features, involving subnetworks of frontoparietal, default mode, and sensory-motor networks. The results show that the brain functional network structures are dynamically reorganized and the derived community structures are temporally modulated by the music features. The proposed generative modeling approach can be an effective tool for describing community structures in brain networks that go beyond static methods and detecting the dynamic reconfiguration of modular connectivity elicited by continuously naturalistic tasks.
...
Julkaisija
IEEEISSN Hae Julkaisufoorumista
1534-4320Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183266098
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
National Natural Science Foundation of China (Grant Number: 91748105), Fundamental Research Funds for the Central Universities (Grant Number: DUT20LAB303)Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization
Wang, Xiulin; Liu, Wenya; Wang, Xiaoyu; Mu, Zhen; Xu, Jing; Chang, Yi; Zhang, Qing; Wu, Jianlin; Cong, Fengyu (Frontiers Media SA, 2021)Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different ... -
Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music
Zhu, Yongjie; Liu, Jia; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (Institute of Electrical and Electronics Engineers, 2020)Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network ... -
Exploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition
Liu, Wenya; Wang, Xiulin; Hämäläinen, Timo; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2022)Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals ... -
Multi-domain Features of the Non-phase-locked Component of Interest Extracted from ERP Data by Tensor Decomposition
Zhang, Guanghui; Zhang, Chi; Cao, Shuo; Xia, Xue; Tan, Xin; Si, Lichengxi; Wang, Chenxin; Wang, Xiaochun; Zhou, Chenglin; Ristaniemi, Tapani; Cong, Fengyu (Springer, 2020)The waveform in the time domain, spectrum in the frequency domain, and topography in the space domain of component(s) of interest are the fundamental indices in neuroscience research. Despite the application of time–frequency ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.