Näytä suppeat kuvailutiedot

dc.contributor.authorZhu, Yongjie
dc.contributor.authorLiu, Jia
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-05-24T10:23:22Z
dc.date.available2023-05-24T10:23:22Z
dc.date.issued2023
dc.identifier.citationZhu, Y., Liu, J., & Cong, F. (2023). Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i>, <i>31</i>, 2438-2447. <a href="https://doi.org/10.1109/tnsre.2023.3277509" target="_blank">https://doi.org/10.1109/tnsre.2023.3277509</a>
dc.identifier.otherCONVID_183266098
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87149
dc.description.abstractThe human brain can be described as a complex network of functional connections between distinct regions, referred to as the brain functional network. Recent studies show that the functional network is a dynamic process and its community structure evolves with time during continuous task performance. Consequently, it is important for the understanding of the human brain to develop dynamic community detection techniques for such time-varying functional networks. Here, we propose a temporal clustering framework based on a set of network generative models and surprisingly it can be linked to Block Component Analysis to detect and track the latent community structure in dynamic functional networks. Specifically, the temporal dynamic networks are represented within a unified three-way tensor framework for simultaneously capturing multiple types of relationships between a set of entities. The multi-linear rank-(L r ,L r ,1) block term decomposition (BTD) is adopted to fit the network generative model to directly recover underlying community structures with the specific evolution of time from the temporal networks. We apply the proposed method to the study of the reorganization of the dynamic brain networks from electroencephalography (EEG) data recorded during free music listening. We derive several network structures (L r communities in each component) with specific temporal patterns (described by BTD components) significantly modulated by musical features, involving subnetworks of frontoparietal, default mode, and sensory-motor networks. The results show that the brain functional network structures are dynamically reorganized and the derived community structures are temporally modulated by the music features. The proposed generative modeling approach can be an effective tool for describing community structures in brain networks that go beyond static methods and detecting the dynamic reconfiguration of modular connectivity elicited by continuously naturalistic tasks.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Neural Systems and Rehabilitation Engineering
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherbrain modeling
dc.subject.othertensors
dc.subject.otherhidden Markov models
dc.subject.otherelectroencephalography
dc.subject.otherfeature extraction
dc.subject.otheranalytical models
dc.subject.othertask analysis
dc.titleDynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202305243218
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2438-2447
dc.relation.issn1534-4320
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoaivot
dc.subject.ysoEEG
dc.subject.ysoaivotutkimus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
jyx.subject.urihttp://www.yso.fi/onto/yso/p23705
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1109/tnsre.2023.3277509
jyx.fundinginformationNational Natural Science Foundation of China (Grant Number: 91748105), Fundamental Research Funds for the Central Universities (Grant Number: DUT20LAB303)
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0