Lightweight Methods to Reduce the Energy Consumption of Wireless Sensor Nodes with Data Compression and Data Fusion
The Internet of Things (IoT) has become part of everyday life in the last 10 years,
and the intense enthusiasm for it has dissipated. Although the term “Internet of
Things” is not as present at the moment, its meaning has not disappeared, but
rather the reverse. Internet access devices are now ubiquitous, and the number
of these devices is still increasing sharply. Each device with an internet connection
can be considered an IoT device. Most of these devices include a sensor or
sensors and a wireless connection to the internet. Due to the large number of devices
and their location everywhere, IoT devices are often battery powered. Battery
operation places demands on the power consumption of devices, as replacing
or charging batteries is difficult and expensive when there are a large number
of devices and when they are located in a wide area. A typical sensor application
is a device for monitoring an environment that transmits data measured by sensors
wirelessly at regular intervals. The power consumption of such a device
should be so low that the device can run on a battery for up to years without
replacing or recharging the battery.
This study focused on exploring and developing sensor data compression
methods that are as light as possible and suitable for sensor nodes with light
computing power. The developed methods are able to compress sensor data in
real-time as new measurement values come in. Thus, the amount of data that can
be transmitted wirelessly is reduced without sacrificing too much data accuracy.
Wireless data transmission is known to be the single largest power consumer in
such a sensor node. In addition, by combining other existing data or data that can
be openly obtained from the internet, the amount of data measured by IoT
devices can be reduced. It is possible to lengthen the measurement interval or
reduce the number of sensor nodes themselves.
In this study, compression methods based on linear regression were
developed, especially for compressing data for measuring environmental
quantities. The methods developed proved to be simple, lightweight, and well
suited for use in sensor nodes. The methods were shown to allow for a clear
reduction in the energy consumption of the sensor node and thus an increase in
its lifetime.
Keywords: Internet of Things, sensor data, compression algorithms, embedded
systems, edge computing
...
Esineiden internetistä on tullut osa jokapäiväistä elämää kymmenen viime vuoden
aikana, mutta samalla suurin innostus aiheeseen on laantunut. Vaikka termi
esineiden internet ei ole yhtä paljon pinnalla, sen merkitys ei ole kadonnut mihinkään,
vaan päinvastoin. Internet-laitteita on nyt kaikkialla, ja määrä kasvaa
edelleen jyrkästi. Jokainen laite, jolla on Internet-yhteys, voidaan laskea kuuluvaksi
esineiden internet -laitteisiin. Suurin osa näistä laitteista sisältää anturin tai
antureita ja langattoman yhteyden Internetiin. Johtuen laitteiden suuresta määrästä
ja niiden sijainnista kaikkialla, esineiden internet -laitteet ovat usein akkukäyttöisiä.
Akun käyttö asettaa vaatimuksia laitteiden energiankulutukselle,
koska akkujen vaihtaminen tai lataaminen on vaikeaa ja kallista, jos laitteita on
paljon ja ne sijaitsevat laajalla alueella. Tyypillinen anturisovellus on ympäristön
seurantaan tarkoitettu laite, joka lähettää antureiden mittaamia tietoja langattomasti
säännöllisin väliajoin. Tällaisen laitteen energiankulutuksen tulisi olla niin
alhainen, että laite voi toimia akulla jopa vuosia vaihtamatta tai lataamatta akkua.
Tässä tutkimuksessa keskityttiin tutkimaan ja kehittämään anturidatan
pakkausmenetelmiä, jotka ovat mahdollisimman kevyitä ja soveltuvat alhaisen
laskentatehon omaaviin anturisolmuihin. Kehitetyt menetelmät pystyvät pakkaamaan
anturidataa reaaliajassa, sitä mukaa kuin uusia mittausarvoja tulee.
Siten langattomasti lähetettävän datan määrää on mahdollista vähentää menettämättä
kuitenkaan liikaa datan tarkkuutta. Langattoman tiedonsiirron tiedetään
olevan suurin yksittäinen energiankuluttaja tällaisessa anturisolmussa. Lisäksi
yhdistämällä muita olemassa olevia tietoja tai avoimesti Internetistä saatavia
tietoja, esineiden internet -laitteiden mittaaman datan määrää voidaan vähentää.
Mittausväliä on mahdollista pidentää tai itse anturisolmujen määrää vähentää.
Tutkimuksessa kehitettiin lineaariseen regressioon perustuvia pakkausmenetelmiä,
erityisesti ympäristösuureiden mittausdatalle. Kehitetyt menetelmät
osoittautuivat yksinkertaisiksi, kevyiksi ja soveltuivat hyvin käytettäväksi anturisolmuissa.
Menetelmien osoitettiin mahdollistavan anturisolmun energiankulutuksen
selkeän vähenemisen ja siten sen käyttöiän pidentämisen.
Avainsanat: esineiden internet, anturidata, pakkausalgoritmit, sulautetut järjestelmät,
reunalaskenta
...
Publisher
Jyväskylän yliopistoISBN
978-951-39-9570-6ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Väänänen, O., & Hämäläinen, T. (2018). Requirements for Energy Efficient Edge Computing : A Survey. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2018, ruSMART 2018 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : 18th International Conference, NEW2AN 2018, and 11th Conference, ruSMART 2018, St. Petersburg, Russia, August 27–29, 2018, Proceedings (pp. 3-15). Springer. Lecture Notes in Computer Science, 11118. DOI: 10.1007/978-3-030-01168-0_1
- Artikkeli II: Väänänen, O., Hautamäki, J., & Hämäläinen, T. (2019). Predictive pumping based on sensor data and weather forecast. In SAS 2019 : Proceedings of the 2019 IEEE Sensors Applications Symposium (pp. 1-5). IEEE. DOI: 10.1109/SAS.2019.8706018
- Artikkeli III: Väänänen, O., & Hämäläinen, T. (2019). Compression methods for microclimate data based on linear approximation of sensor data. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2019, ruSMART 2019 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things and Smart Spaces (pp. 28-40). Springer. Lecture Notes in Computer Science, 11660. DOI: 10.1007/978-3-030-30859-9_3
- Artikkeli IV: Väänänen, O., Zolotukhin, M., & Hämäläinen, T. (2020). Linear Approximation Based Compression Algorithms Efficiency to Compress Environmental Data Sets. In L. Barolli, F. Amato, F. Moscato, T. Enokido, & M. Takizawa (Eds.), Web, Artificial Intelligence and Network Applications : Proceedings of the Workshops of the 34th International Conference on Advanced Information Networking and Applications (WAINA-2020) (pp. 110-121). Springer. Advances in Intelligent Systems and Computing, 1150. DOI: 10.1007/978-3-030-44038-1_11
- Artikkeli V: Väänänen, O. and Hämäläinen, T. (2020). Sensor Data Stream on-line Compression with Linearity-based Methods. IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 2020, 220-225. DOI: 10.1109/SMARTCOMP50058.2020.00049
- Artikkeli VI: Väänänen, O., & Hämäläinen, T. (2021). LoRa-Based Sensor Node Energy Consumption with Data Compression. In MetroInd4.0&IoT : Proceedings of 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT (pp. 6-11). IEEE. DOI: 10.1109/MetroInd4.0IoT51437.2021.9488434
- Artikkeli VII: Väänänen, O., & Hämäläinen, T. (2022). Efficiency of temporal sensor data compression methods to reduce LoRa-based sensor node energy consumption. Sensor Review, 42(5), 503-516. DOI: 10.1108/sr-10-2021-0360
- Artikkeli VIII: Väänänen, O., & Hämäläinen, T. (2023). Linearity-based Sensor Data Online Compression Methods for Environmental Applications. In CIoT 2023 : Proceedings of the 6th Conference on Cloud and Internet of Things (pp. 149-156). IEEE. DOI: 10.1109/CIoT57267.2023.10084892
Metadata
Show full item recordCollections
- JYU Dissertations [846]
- Väitöskirjat [3559]
License
Related items
Showing items with similar title or keywords.
-
LoRa-Based Sensor Node Energy Consumption with Data Compression
Väänänen, Olli; Hämäläinen, Timo (IEEE, 2021)In this paper simple temporal compression algorithms' efficiency to reduce LoRa-based sensor node energy consumption has been evaluated and measured. It is known that radio transmission is the most energy consuming operation ... -
Efficiency of temporal sensor data compression methods to reduce LoRa-based sensor node energy consumption
Väänänen, Olli; Hämäläinen, Timo (Emerald, 2022)Purpose Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a wireless sensor node, and by compressing ... -
Linearity-based Sensor Data Online Compression Methods for Environmental Applications
Väänänen, Olli; Hämäläinen, Timo (IEEE, 2023)Environmental monitoring is a typical Internet of Things (IoT) application. Environmental monitoring plays a significant role, for example, in smart farming and smart city applications. Environmental magnitudes are usually ... -
Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera
Rahkonen, Samuli; Lind, Leevi; Raita-Hakola, Anna-Maria; Kiiskinen, Sampsa; Pölönen, Ilkka (MDPI AG, 2022)Hyperspectral imaging and distance data have previously been used in aerial, forestry, agricultural, and medical imaging applications. Extracting meaningful information from a combination of different imaging modalities ... -
Energy Efficient Resource Allocation for Wireless Powered UAV Wireless Communication System with Short Packet
Xie, Jin; Chang, Zheng; Guo, Xijuan; Hämäläinen, Timo (Institute of Electrical and Electronics Engineers (IEEE), 2022)The unmanned aerial vehicle (UAV), which is prominent in its flexibility and low cost, is considered to be fully utilized in the future wireless communication system to provide flexible services and improve connectivities. ...