
Olli Väänänen

JYU DISSERTATIONS 645

Lightweight Methods to Reduce
the Energy Consumption of Wireless
Sensor Nodes with Data Compression
and Data Fusion

JYU DISSERTATIONS 645

Olli Väänänen

Lightweight Methods to Reduce
the Energy Consumption of Wireless
Sensor Nodes with Data Compression

and Data Fusion

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 3

toukokuun 30. päivänä 2023 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in building Agora, Auditorium 3, on May 30, 2023 at 12 o’clock noon.

JYVÄSKYLÄ 2023

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

Copyright © 2023, by author and University of Jyväskylä

ISBN 978-951-39-9570-6 (PDF)
URN:ISBN:978-951-39-9570-6
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-9570-6

ABSTRACT

Väänänen, Olli
Lightweight Methods to Reduce the Energy Consumption of Wireless Sensor
Nodes with Data Compression and Data Fusion
Jyväskylä: University of Jyväskylä, 2023, 53 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 645)
ISBN 978-951-39-9570-6 (PDF)

The Internet of Things (IoT) has become part of everyday life in the last 10 years,
and the intense enthusiasm for it has dissipated. Although the term “Internet of
Things” is not as present at the moment, its meaning has not disappeared, but
rather the reverse. Internet access devices are now ubiquitous, and the number
of these devices is still increasing sharply. Each device with an internet connec-
tion can be considered an IoT device. Most of these devices include a sensor or
sensors and a wireless connection to the internet. Due to the large number of de-
vices and their location everywhere, IoT devices are often battery powered. Bat-
tery operation places demands on the power consumption of devices, as replac-
ing or charging batteries is difficult and expensive when there are a large number
of devices and when they are located in a wide area. A typical sensor application
is a device for monitoring an environment that transmits data measured by sen-
sors wirelessly at regular intervals. The power consumption of such a device
should be so low that the device can run on a battery for up to years without
replacing or recharging the battery.

This study focused on exploring and developing sensor data compression
methods that are as light as possible and suitable for sensor nodes with light
computing power. The developed methods are able to compress sensor data in
real-time as new measurement values come in. Thus, the amount of data that can
be transmitted wirelessly is reduced without sacrificing too much data accuracy.
Wireless data transmission is known to be the single largest power consumer in
such a sensor node. In addition, by combining other existing data or data that can
be openly obtained from the internet, the amount of data measured by IoT
devices can be reduced. It is possible to lengthen the measurement interval or
reduce the number of sensor nodes themselves.

In this study, compression methods based on linear regression were
developed, especially for compressing data for measuring environmental
quantities. The methods developed proved to be simple, lightweight, and well
suited for use in sensor nodes. The methods were shown to allow for a clear
reduction in the energy consumption of the sensor node and thus an increase in
its lifetime.

Keywords: Internet of Things, sensor data, compression algorithms, embedded
systems, edge computing

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Väänänen, Olli
Kevyet menetelmät langattomien anturisolmujen energiankulutuksen vähentä-
miseksi datan pakkaamisen ja datojen yhdistämisen avulla
Jyväskylä: Jyväskylän yliopisto, 2023, 53 p. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 645)
ISBN 978-951-39-9570-6 (PDF)

Esineiden internetistä on tullut osa jokapäiväistä elämää kymmenen viime vuo-
den aikana, mutta samalla suurin innostus aiheeseen on laantunut. Vaikka termi
esineiden internet ei ole yhtä paljon pinnalla, sen merkitys ei ole kadonnut mi-
hinkään, vaan päinvastoin. Internet-laitteita on nyt kaikkialla, ja määrä kasvaa
edelleen jyrkästi. Jokainen laite, jolla on Internet-yhteys, voidaan laskea kuulu-
vaksi esineiden internet -laitteisiin. Suurin osa näistä laitteista sisältää anturin tai
antureita ja langattoman yhteyden Internetiin. Johtuen laitteiden suuresta mää-
rästä ja niiden sijainnista kaikkialla, esineiden internet -laitteet ovat usein akku-
käyttöisiä. Akun käyttö asettaa vaatimuksia laitteiden energiankulutukselle,
koska akkujen vaihtaminen tai lataaminen on vaikeaa ja kallista, jos laitteita on
paljon ja ne sijaitsevat laajalla alueella. Tyypillinen anturisovellus on ympäristön
seurantaan tarkoitettu laite, joka lähettää antureiden mittaamia tietoja langatto-
masti säännöllisin väliajoin. Tällaisen laitteen energiankulutuksen tulisi olla niin
alhainen, että laite voi toimia akulla jopa vuosia vaihtamatta tai lataamatta akkua.

Tässä tutkimuksessa keskityttiin tutkimaan ja kehittämään anturidatan
pakkausmenetelmiä, jotka ovat mahdollisimman kevyitä ja soveltuvat alhaisen
laskentatehon omaaviin anturisolmuihin. Kehitetyt menetelmät pystyvät pak-
kaamaan anturidataa reaaliajassa, sitä mukaa kuin uusia mittausarvoja tulee.
Siten langattomasti lähetettävän datan määrää on mahdollista vähentää menet-
tämättä kuitenkaan liikaa datan tarkkuutta. Langattoman tiedonsiirron tiedetään
olevan suurin yksittäinen energiankuluttaja tällaisessa anturisolmussa. Lisäksi
yhdistämällä muita olemassa olevia tietoja tai avoimesti Internetistä saatavia
tietoja, esineiden internet -laitteiden mittaaman datan määrää voidaan vähentää.
Mittausväliä on mahdollista pidentää tai itse anturisolmujen määrää vähentää.

Tutkimuksessa kehitettiin lineaariseen regressioon perustuvia pakkausme-
netelmiä, erityisesti ympäristösuureiden mittausdatalle. Kehitetyt menetelmät
osoittautuivat yksinkertaisiksi, kevyiksi ja soveltuivat hyvin käytettäväksi antu-
risolmuissa. Menetelmien osoitettiin mahdollistavan anturisolmun energianku-
lutuksen selkeän vähenemisen ja siten sen käyttöiän pidentämisen.

Avainsanat: esineiden internet, anturidata, pakkausalgoritmit, sulautetut järjes-
telmät, reunalaskenta

Author Olli Väänänen
Faculty of Information Technology
University of Jyväskylä
Finland
ORCID: 0000-0002-7211-7668

Supervisor Timo Hämäläinen
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Pekka Toivanen
School of Computing
University of Eastern Finland
Finland

Andrey Garnaev
WINLAB
Rutgers University
USA

Opponent Susanna Pirttikangas
Faculty of Information Technology and Electrical
Engineering
University of Oulu
Finland

ACKNOWLEDGEMENTS

When I started this journey to reach PhD, I didn’t have a clear vision of what my
dissertation would be dealing. I just thought it would be something related to the
Internet of Things and embedded systems. The general topic was then found
quite quickly when studying the latest research and articles related to the Internet
of Things. All in all, the whole journey began slowly, then there was a time of
rapid progress, until the last year and a half, things were completed slowly. But
at the end, I was in no hurry to end my PhD journey. I didn’t sacrifice any
holidays or nights because of this, but a lot of other free time; yes, in the evenings
and on weekends.

First of all, I would like to express my sincere gratitude to my supervisor,
Prof. Timo Hämäläinen. He was very supportive and gave me valuable guidance,
but at the same time he trusted me and let me find my own path in the field of
research.

I would like to thank the Jamk University of Applied Sciences for the
opportunity and support to publish my research articles related to this
dissertation. I would also like to thank Ms. Tuula Kotikoski for proofreading
most of the research articles in this dissertation in English.

I would like to say special thanks to my reviewers: Prof. Andrey Garnaev
from Rutgers University in USA and Prof. Pekka Toivanen from the University
of Eastern Finland in Finland as well as the opponent Dos. Susanna Pirttikangas
from the University of Oulu in Finland. Many thanks to them for their time and
efforts, and valuable comments.

I also send sincere thanks to my parents, family, and friends for their
continuing support and for not asking too much about the progress of my studies.

Jyväskylä 3.5.2023
Olli Väänänen

FIGURES

FIGURE 1 PCA for the test dataset .. 18
FIGURE 2 APCA for the test dataset ... 19
FIGURE 3 PWLH for the test dataset .. 21
FIGURE 4 LTC algorithm ... 22
FIGURE 5 LTC for the test dataset .. 23
FIGURE 6 Edge and fog architecture in IoT ... 28
FIGURE 7 The IoT-based pumping control system. ... 31
FIGURE 8 Arduino MKR WAN 1310 setup. .. 40
FIGURE 9 Shunt resistor circuit. .. 41

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 11

2 RELATED WORK .. 14
2.1 Methods to Reduce the IoT Sensor Node’s Energy Consumption 14
2.2 Lightweight Temporal Compression Methods for Sensor Data 16

3 MOTIVATION AND RESEARCH PROBLEM .. 24

4 OVERVIEW OF INCLUDED ARTICLES ... 26
4.1 Article I: Requirements for Energy Efficient Edge Computing: A

Survey ... 27
4.2 Article II: Predictive pumping based on sensor data and weather

forecast ... 30
4.3 Article III: Compression Methods for Microclimate Data Based on

Linear Approximation of Sensor Data ... 32
4.4 Article IV: Linear Approximation Based Compression Algorithms

Efficiency to Compress Environmental Data Sets 34
4.5 Article V: Sensor Data Stream On-line Compression with Linearity-

based Methods .. 36
4.6 Article VI: LoRa-Based Sensor Node Energy Consumption with Data

Compression .. 37
4.7 Article VII: Efficiency of temporal sensor data compression methods

to reduce LoRa-based sensor node energy consumption 39
4.8 Article VIII: Linearity-based Sensor Data Online Compression

Methods for Environmental Applications .. 42

5 DISCUSSION AND CONCLUSIONS ... 45

YHTEENVETO (SUMMARY IN FINNISH) .. 47

REFERENCES ... 48

ORIGINAL PAPERS

LIST OF INCLUDED ARTICLES

I O. Väänänen and T. Hämäläinen, ”Requirements for Energy Efficient
Edge Computing: A Survey,” in The 18th International Conference on Next
Generation Wired/Wireless Advanced Networks and Systems NEW2AN 2018,
St. Petersburg, Russia, Aug. 2018, doi: https://doi.org/10.1007/978-3-
030-01168-0_1

II O. Väänänen, J. Hautamäki and T. Hämäläinen, “Predictive pumping
based on sensor data and weather forecast,” 2019 IEEE Sensors
Applications Symposium (SAS), Sophia Antipolis, France, 2019, pp. 1–5, doi:
https://doi.org/10.1109/SAS.2019.8706018

III O. Väänänen and T. Hämäläinen, ”Compression Methods for
Microclimate Data Based on Linear Approximation of Sensor Data,” The
19th International Conference on Next Generation Wired/Wireless Advanced
Networks and Systems NEW2AN 2019, St. Petersburg, Russia, Aug. 2019,
doi: https://doi.org/10.1007/978-3-030-30859-9_3

IV O. Väänänen, M. Zolotukhin, and T. Hämäläinen, “Linear
Approximation Based Compression Algorithms Efficiency to Compress
Environmental Data Sets,” In: Barolli, L., Amato, F., Moscato, F., Enokido,
T., Takizawa, M. (eds) Web, Artificial Intelligence and Network
Applications. WAINA 2020. Advances in Intelligent Systems and
Computing, vol. 1150. Springer, Cham. doi:
https://doi.org/10.1007/978-3-030-44038-1_11

V O. Väänänen and T. Hämäläinen, “Sensor Data Stream on-line
Compression with Linearity-based Methods,” 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 2020, pp.
220-225, doi: https://doi.org/10.1109/SMARTCOMP50058.2020.00049

VI O. Väänänen and T. Hämäläinen, “LoRa-Based Sensor Node Energy
Consumption with Data Compression,” 2021 IEEE International Workshop
on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 2021,
pp. 6-11, doi:
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434

VII O. Väänänen and T. Hämäläinen, ”Efficiency of temporal sensor data
compression methods to reduce LoRa-based sensor node energy
consumption,” in Sensor Review, vol. 42, no. 5, pp. 503–516, 2022, doi:
https://doi.org/10.1108/SR-10-2021-0360

VIII O. Väänänen and T. Hämäläinen, ”Linearity-based Sensor Data Online
Compression Methods for Environmental Applications,” 6th Conference
on Cloud and Internet of Things (CIoT), Lisbon, Portugal, 2023, pp. 149-156,
doi: https://doi.org/10.1109/CIoT57267.2023.10084892

https://doi.org/10.1007/978-3-030-01168-0_1
https://doi.org/10.1007/978-3-030-01168-0_1
https://doi.org/10.1109/SAS.2019.8706018
https://doi.org/10.1007/978-3-030-30859-9_3
https://doi.org/10.1007/978-3-030-44038-1_11
https://doi.org/10.1109/SMARTCOMP50058.2020.00049
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434
https://www.emerald.com/insight/publication/issn/0260-2288
https://doi.org/10.1108/SR-10-2021-0360
https://doi.org/10.1109/CIoT57267.2023.10084892

11

The increase in Internet of Things (IoT) devices has brought the edge computing
paradigm to focus in recent years. Estimates of the number of IoT devices
connected to the network vary significantly. In 2021, 35 billion IoT devices were
estimated to have been installed worldwide, and in 2025, more than 75 billion
devices will be installed in total [1]. There is the other estimation that in 2025, 37
billion industrial IoT devices will be installed in total, but this number does not
include consumer IoT devices [2]. These estimations seem to be slightly
exaggerated as there are new, more modest estimations. In [3], it was estimated
that there were 7.6 billion active IoT devices at the end of 2019, and this number
will increase to 24.1 billion by 2030. In 2021, there were 12.2 billion connected IoT
devices globally, and it was estimated to increase to 14.4 billion devices by the
end of 2022 [4]. The same source estimated that in 2025, there would be 27 billion
connected IoT devices globally. Overall, it is difficult to estimate the actual
number of IoT devices, but the general view is that the number of IoT devices
will increase significantly in the following years. This means a significant rise in
market size. The IoT market size is estimated to be worth USD 384.7 billion in
2021, and it will increase to 2,464.26 billion by 2029 [5].

Most IoT devices are connected wirelessly to the network; thus, the need for
reliable wireless connections is crucial. Numerous wireless technologies and
protocols for use in IoT devices are available, but the drawback of wireless
connections is the significant need for electrical energy for data transmission.
Wireless communication is known as the major energy consumer in wireless
sensor networks [6]. IoT devices are usually battery powered with limited energy
resources. Many wireless technologies have been developed, particularly with
low energy consumption in mind. Suitable low-energy-consumption wireless
technologies for IoT devices include LoRa and SigFox [7]. Minimizing the
wireless sensor node or IoT device energy consumption requires paying attention
to every stage of device design and operation [6].

Edge computing is an effective and significant method to solve the
problems and challenges of a large number of IoT devices produce for the
reliability of wireless connections. Edge computing can also help minimize the

1 INTRODUCTION

12

energy consumption of IoT devices, thus increasing the lifetime of IoT devices.
This is due to the reduction of the data needed to be transmitted via wireless
connection. Edge computing does not mean an automatic savings in energy
consumption, but when it is properly used, it is possible to achieve a reduction
in energy consumption. Edge computing as a term is rather unclear, and it is
sometimes described as the same as, or at least very close to, fog computing.
Many sources define the term edge as an IoT end device, such as a sensor node,
and the term fog as the next level from the end device in a hierarchical placement.
This ‘next level’ refers to, for example, network devices such as gateways, base
stations, and routers [8,9]. Edge computing means that at least part of the
calculations and decision making takes place in the edge device; thus, not all raw
data necessarily need to be transmitted via the network. This type of approach
reduces the amount of data required for transmission via a wireless connection,
thus also helping to reduce energy consumption in the end device. However,
edge computing may require more calculations in the edge device, thus
increasing energy consumption in some cases.

The largest energy consumer in wireless edge devices is the radio
transmitter when it is in idle mode or transmitting [10]. The edge computing
paradigm has been proven to be a suitable solution for maximizing the lifetime
of battery powered IoT end devices [11]. IoT sensor nodes are usually
widespread in the environment, and the number of nodes can be large. Thus, it
is not suitable to power nodes from a public electricity network; instead, the
nodes must be powered by batteries or through energy harvesting. This type of
situation is quite typical, for example, in different agricultural applications in
which IoT nodes are located in the countryside and, possibly, in fields. The
replacement of empty batteries for numerous IoT nodes incurs a significant cost.
Therefore, edge computing, when used correctly, is a cost-effective solution. A
simple edge computing method to reduce the energy consumption of an IoT
sensor node is to compress the node’s raw sensor data and thus reduce the overall
amount of data needed to transmit over a wireless connection [12]. It can also
reduce the number of transmission cycles. Thus, the radio transmitter can be in
sleep mode for a longer time.

Edge computing also significantly contributes to ensuring security and
protecting privacy. If the raw data are sensitive, decision making at the edge
removes the need to send sensitive data via the public internet. Such sensitive
sensor data can be personal health data. However, it also gives rise to new
security concerns. IoT edge devices can be connected to a large number of other
IoT devices through traditional sensor networks. These IoT devices can be
heterogeneous in nature, have limited resources, and utilize different routing
protocols [13,14]. Some of these devices can have security vulnerabilities, and it
is difficult to guarantee the security of all these devices.

One significant benefit of edge computing is shorter latency [13]. Latency is
also more predictable and stable if the calculations and decision making are
performed in close proximity to the edge device. Some safety-critical applications
require short latency, which can be achieved with edge computing. Solutions that

13

are safety critical and require short latency include various smart traffic
applications, such as connected vehicles and even autonomous vehicles, in the
future.

14

In this chapter, a review is given to provide readers with some background
material on the methods used to reduce the sensor node’s energy consumption,
mainly with simple compression methods.

2.1 Methods to Reduce the IoT Sensor Node’s Energy
Consumption

Maximizing the IoT sensor node lifetime requires minimizing energy
consumption in every operating phase of the device and choosing optimal
hardware and network solutions. A typical wireless IoT sensor node architecture
can be divided into the following subsystems: computing system
(microcontroller/microprocessor, MCU), wireless communication subsystem
(radio), sensing subsystem, and power supply subsystem [6].

The power performance of different MCUs has been studied widely, and
several wireless communication technologies for constrained IoT devices have
been developed, such as NB-IoT, LoRa, and SigFox [6,7,15]. Many IoT wireless
networks operate at a sub-1 GHz frequency to achieve broader network coverage
and low power consumption [16]. At sub-1 GHz frequencies, the signal is less
sensitive to obstacles such as walls and buildings. These network technologies
specialized for the IoT are called low-power wide-area networks (LPWANs), and
they utilize star topology [17,18]. LPWANs allow communication over a
kilometer distance with low energy consumption, but they have the
disadvantage of a low data rate [18]. Therefore, these technologies are suitable
for sensing devices that are located in a wide area and are battery powered.

A sensing subsystem is a vital part of an IoT device [19]. An IoT sensor node
can include several sensors that all consume energy. This energy consumption
can become a significant problem for IoT devices that have limited energy
resources. Two possible solutions for this energy consumption problem are
energy harvesting and energy saving [19]. As energy harvesting is rather low and

2 RELATED WORK

15

weak power supply, it requires different energy-saving techniques. Energy
saving techniques attempts to optimize the energy consumption of IoT devices.
These methods can be utilized at different levels of device operation [19]. As the
number of sensors increases in one IoT device, it results in a significant increase
in energy consumption. Thus, one method to reduce sensors’ energy
consumption is to measure periodically and to set sensors in sleep mode between
measurement periods, if possible.

A power supply subsystem requires the use of energy-efficient components
for energy saving [20]. Energy-efficient components and designs use switched
power supplies instead of linear regulators. Switched power supplies are more
challenging to design because they can cause electromagnetic disturbances in the
device itself and in the environment [21].

Therefore, energy consumption is affected by the physical sensors, central
processing unit hardware, wireless network, hardware platform and all its
solutions, and computation model [19]. Examples of software solutions for
reducing energy consumption include the efficient use of MCU operating modes,
such as sleep mode, and pre-processing data to reduce the need for transmission.
Data pre-processing can be in the lightest mode only to filter erroneous or
redundant data. Typically, data pre-processing includes data compression and
some encryption. Data compression is used to reduce the amount of data needed
to transmit; thus, it can reduce the energy consumption of the IoT device [22].
Data encryption is essential for security and privacy, but it usually requires more
complex calculations, thus deriving higher energy consumption. The increase in
energy consumption due to encryption is dependent on the type of encryption
algorithm used. There are available encryption schemes that do not significantly
affect end-node energy consumption [23,24].

Compression techniques can be broadly categorized into two categories:
those that result in loss of data (lossy) and those that do not (lossless) [25].
Lossless compression does not lose any information. The original data can be
recovered but at the cost of a lower Compression Ratio (CR) and more complex
calculations. Thus, lossy compression algorithms are recommended for sensor
data because sensor data are not accurate and sensor nodes are computationally
constrained [26]. Lossy compression methods can be divided into transform-
based and time domain methods. Well-known transform-based lossy
compression methods include Discrete Cosine Transform (DCT), Discrete
Fourier Transform (DFT), and Discrete Wavelet Transform (DWT) [27,28]. Time
domain methods include data linearity-based compression techniques, such as
Lightweight Temporal Compression (LTC), Piecewise Constant Approximation
(PCA), Adaptive PCA (APCA), and PieceWise Linear Histogram (PWLH) [29,30].

Prediction-based methods have been widely used and have proven
effective for image compression [31]. Prediction-based methods for sensor data
have been also proposed [32,33]. There are both lossy and lossless methods. In
[34], a lossy predictive coding -based compression algorithm for real-time data
has been proposed and verified to be efficient. Although these prediction-based

16

methods are effective, they are more complex than linearity-based methods.
Therefore, they are not the subject of this dissertation.

2.2 Lightweight Temporal Compression Methods for Sensor Data

Various data compression methods have been developed for decades. Some
compression algorithms are suitable for environmental data and some for
physiological signals in wireless body area networks (WBAN) [35,36]. Some
compression algorithms are more complex than others, and there is a significant
difference in their CRs. The ability of compression methods to compress data also
depends on the type of data it is used to compress [37,38]. Because IoT sensor
nodes are often computationally limited and have limited energy resources, the
compression methods used must be computationally light. Most compression
algorithms are unsuitable for constrained sensor nodes with limited energy
resources [39]. In addition, many healthcare applications in WBAN require real-
time compression of one sample at a time [40]. The methods presented in this
study are simple and suitable for constrained sensor nodes.

Typically, sensors measure environmental magnitudes such as temperature,
humidity, air pressure, and solar radiation. These types of environmental
magnitudes behave linearly on a short time scale [29]. There are simple and light
compression algorithms suitable for this type of data. Most simple algorithms are
based on data linearity. For example, LTC is an efficient method for compressing
environmental data. It adapts and finds linear sections from consecutively
measured values with a certain allowed error bound [29]. Thus, LTC and most
other simple methods are called lossy methods. Lossy methods lose some
information, and the reconstructed data after compression differ from the
original data. The error bound represents the maximum allowable loss. Many
simple linearity-based algorithms use linear regression or other simple methods
to find the best-suited linear sections from measured data [30]. These linearity-
based lossy compression methods are known as time-domain compression
algorithms. The other category of compression algorithms is transform-based
algorithms. In these algorithms, data are transformed into a different domain in
which the data characteristics are represented by a limited number of coefficients
obtained using a different transform method [37]. Well-known transform-based
methods include DFT and DCT.

The effectiveness of a compression algorithm is evaluated based on three
metrics:

1. Compression Ratio (CR),
2. Computational Complexity, and
3. Root Mean Square Error (RMSE) [30].

Most methods presented in the literature are suitable for retrospectively
compressing data. If the dataset is already available, it is possible to find the best
possible solution for compressing the dataset. For example, linearity-based

17

methods can be used to find the best-suited, linearly behaving periods in a
dataset to fit different linear models. This type of approach is not suitable for
compressing real-time sensor data streams. If the sensor data stream is required
to compress in real-time, then the inherent latency of the compression algorithm
is a significant parameter [41].

Methods that are not suitable for compressing sensor data streams in real-
time mode can be used in periodic sensor networks (PSN), in which data are
always sent periodically to the sink [42,43]. The sending frequency describes the
inherent latency of a PSN. In addition, there is always time required for algorithm
computation and transmission delay. The data collected between the sending
periods can be treated as any dataset. The compression algorithm can be used to
compress the dataset, and only the compressed data are sent to the sink. This type
of method can significantly reduce the amount of data but does not decrease the
required transmission periods. Transmission periods are described in PSN, and
they also describe the latency and suitability for near-real-time applications. Thus,
the ability of the algorithm to reduce energy consumption in the PSN sensor node
is limited to reducing the amount of data needed to send in one sending period.

Simple linearity-based methods include PCA, poor man’s compression,
APCA, PWLH, slide filter (SF), and LTC [29,30,44]. In the descriptions of the
compression algorithms, the original sensor data are presented as data pairs

𝑆𝑆 = 〈(𝑣𝑣1, 𝑡𝑡1), (𝑣𝑣2, 𝑡𝑡2), … , (𝑣𝑣𝑛𝑛, 𝑡𝑡𝑛𝑛)〉,

where 𝑣𝑣𝑖𝑖 is the measured sensor value (data point), and 𝑡𝑡𝑖𝑖 is the timestamp.
Normally, the sensor data are gathered with a constant measurement frequency
(measurement interval, ∆𝑡𝑡), creating a dataset represented by S.

The methods PCA, APCA, PWLH, and LTC are briefly described next.

Piecewise Constant Approximation

In PCA, the entire dataset, S, is divided into fixed-length segments. This method
is similar to piecewise aggregate approximation. The algorithm was explained in
[30]. The length of each segment is 𝑤𝑤. The algorithm compares the largest and
smallest values in each segment. If the difference between the largest and
smallest values is smaller than two error bounds (2 ∙ 𝜀𝜀), then all the data points
in that segment are presented with one value, which is the midpoint between the
highest and smallest values,

𝑐𝑐𝑖𝑖 =
(𝑣𝑣max + 𝑣𝑣min)

2

Therefore, each raw data value is within an error bound distance from the
compressed value. If the data values do not fit the error bound limits, then the
original data values remain in the compression output. The compressed data are
presented as

PCA(𝑆𝑆) = 〈(𝑐𝑐1,𝑓𝑓1), (𝑐𝑐2,𝑓𝑓2), … , (𝑐𝑐𝑘𝑘, 𝑓𝑓𝑘𝑘)〉,

18

where 𝑓𝑓𝑖𝑖 is a Boolean value indicating that the value 𝑐𝑐𝑖𝑖 is a constant value
(compressed) or a raw value (not compressed due to values falling out from error
bound limits) [30].

An example of PCA algorithm results is shown in Figure 1. The data are real
temperature measurement data with a 10-min measurement interval. The
temperature is measured in degrees Celsius, with a resolution of 0.1 degrees. The
raw data contain 30 temperature sensor values (blue circles). The error bound
used in PCA compression is 0.5 ℃, and the length of segment 𝑤𝑤 is 5 measurement
values. In Figure 1, the solid constant five-measurement long lines present the
compressed constant value. Thus, the first five original values (timestamps 1–5)
are presented with one value, which is −7.1 ℃. From 6 to 10, the constant value
is −7.85°. The values between 11 and 15 vary more than two error bounds in total.
Therefore, these values do not fit in the constant segment and are presented as
original values. In this example, the original dataset contained 30 temperature
values, and with a PCA algorithm with a 0.5 ℃ error bound, the compressed
dataset contains 14 values and 14 Boolean 𝑓𝑓𝑖𝑖 values. In addition, the compressed
dataset can also include the timestamps, but it is also possible to derive the
timestamps from the compressed data, as the length of the constant segments is
known.

FIGURE 1 PCA for the test dataset

The PCA algorithm is simple but also limited in its compression efficiency.
This algorithm is suitable if the entire dataset or at least one fixed-segment length
is available. Segment length describes the algorithm’s inherent latency and
theoretical maximum CR. The PCA algorithm is appropriate for data that are
almost constant or change only slightly. If the values change rapidly in one
direction, as is often the case with ambient temperature, the method is not
effective. The theoretical maximum for CR is 𝑤𝑤 because if every value in the
dataset fits into one of the fixed linear sections (length of 𝑤𝑤), then 𝑛𝑛/𝑤𝑤 linear
sections exist (𝑛𝑛 is the number of data points in the original dataset), and thus the
number of values is the same in the compressed dataset. Subsequently,

19

CR =
𝑛𝑛
𝑛𝑛
𝑤𝑤

= 𝑤𝑤.

In addition, 𝑛𝑛/𝑤𝑤 Boolean values are required.
The PCA algorithm has variations, such as the cache filter, poor man’s

compression (mean), and poor man’s compression (mid-range), which is the
same compression algorithm as the PCA [45].

Adaptive Piecewise Constant Approximation

APCA is an advanced version of PCA. In some sources, this method is called
PCA. However, in this study, PCA has fixed-length constant segments, as
presented previously, while in APCA, the window size 𝑤𝑤 varies to achieve the
best possible CR [46]. Thus, APCA is rather similar to PCA.

The APCA algorithm starts from the first value in the dataset and continues
to subsequent values one by one continuously, comparing the values with each
other as long as 𝑣𝑣max − 𝑣𝑣min ≤ 2𝜀𝜀. When the difference between the largest and
smallest values exceeds the error bound requirements, the last value is removed
from the constant linear segment. The constant linear segment value is calculated
as in PCA as the middle value between the largest and smallest values. For the
next segment, the APCA algorithm begins the comparison again, starting from
the value that falls out of the previous linear segment [30].

The results of the APCA (with an error bound 𝜀𝜀 = ±0.5 ℃) for the test
dataset are shown in Figure 2. The test dataset is the same as that used for PCA.
The original dataset of 30 values is reduced to five constant values with varying
lengths as a result of the compression.

FIGURE 2 APCA for the test dataset

Similar to PCA, APCA also works well if the values remain stable, but when
the values change periodically in one direction, the compression efficiency is
limited. As a result of the APCA compression algorithm, the original dataset is
presented as a sequence of 𝑘𝑘data segments presented as a pair of values 𝑐𝑐𝑖𝑖

20

(constant value) and 𝜏𝜏𝑖𝑖 (timestamp of the last data point in the segment). The
compressed data are presented as

APCA(𝑆𝑆) = 〈(𝑐𝑐1, 𝜏𝜏1), (𝑐𝑐2, 𝜏𝜏2), … , (𝑐𝑐𝑘𝑘, 𝜏𝜏𝑘𝑘)〉.

Each constant-value segment varies in length, and the size of the segment can be
as short as one data point [30,46]. Owing to the unpredictable length of the
segments, the inherent latency of the APCA algorithm is unknown and depends
on the dataset characteristics. If the data do not vary significantly and remain for
long periods within the error bound requirement, the CR will be high; however,
as a drawback, the latency will also be high [44]. APCA is unsuitable for real-time
applications due to its unpredictable latency.

The APCA algorithm is a simple method and is thus well suited for
constrained sensor nodes. Nevertheless, its effectiveness in compressing data is
limited, and there are more effective but slightly more complex algorithms
available. In APCA, a single segment costs 𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡 space to store, where 𝑏𝑏𝑠𝑠 is the
size of the constant value (individual data points in the original data are of the
same size), and 𝑏𝑏𝑡𝑡𝑡𝑡 is the size of the timestamp. The CR in the total size is

CRsize =
𝑛𝑛�𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡�
𝑘𝑘�𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡�

,

where 𝑛𝑛 is the number of data points in the original dataset, and 𝑘𝑘 is the number
of constant segments after compression [46]. Thus, the overall CR in the data
points is CR = 𝑛𝑛

𝑘𝑘
.

Piecewise Linear Histogram

PWLH is similar to APCA, but the linear segments do not need to have constant
values. The algorithm finds the best-fit linear segments from the original data
that meet the error bound requirements. The PWLH algorithm uses linear
regression to find the best-fit linear segment starting from data point 1 and
continuing as long as the difference between each individual data point remains
within the error bound from the regression line. In the compressed dataset, each
linear line is presented with three parameters: 𝑐𝑐𝑖𝑖𝑏𝑏, which is the beginning value
of the linear segment; 𝑐𝑐𝑖𝑖𝑒𝑒, which is the end value of the segment; and 𝜏𝜏𝑖𝑖, which is
the timestamp of the end point of the linear segment. Thus, the compressed
dataset is presented as

PWLH(𝑆𝑆) = 〈�𝑐𝑐1𝑏𝑏 , 𝑐𝑐1𝑒𝑒 , 𝜏𝜏1�, �𝑐𝑐2𝑏𝑏 , 𝑐𝑐2𝑒𝑒 , 𝜏𝜏2�, … , �𝑐𝑐𝑘𝑘𝑏𝑏, 𝑐𝑐𝑘𝑘𝑒𝑒 , 𝜏𝜏𝑘𝑘�〉,

see [30,47].
In Figure 3, the PWLH algorithm is used for the same test data as for PCA

in Figure 1 and for APCA in Figure 2. The solid black lines represent the linear
segments when the error bound is 0.5 ℃. The raw dataset can be modeled with
two linear lines.

21

FIGURE 3 PWLH for the test dataset

The linear regression line must be calculated from three values to as many
values as there are in each final linear segment. Many calculations are required if
the linear segment is long. The computational complexity is not as low as that of
other simple methods. In addition, the inherent latency becomes high and
unpredictable when the linear segments are long. Unpredictable and long
inherent latency makes the algorithm inappropriate for use in online streaming
and in real-time or near-real-time applications. The basic idea of finding the best-
fit linear line to represent a dataset and maximize the CR has been used in many
linearity-based compression algorithms. Examples of slight variations of the idea
are bounded-error piecewise linear approximation, SF, swing filter, and swing-
RR [30,45,48,49].

Lightweight Temporal Compression

LTC is a well-known simple compression algorithm. It was first presented in [29],
but a similar algorithm, Fan, was actually presented previously in [50] for
electrocardiogram (ECG) data. LTC is a powerful compression algorithm,
especially for environmental data that behave quite linearly when the
observation time window is short. The CR depends on the data properties and
the error bound used. LTC can achieve a CR as high as 20 when compressing
environmental temperature data [29].

The functionality of the LTC algorithm is illustrated in Figure 4. The linear
model starts with the first measured value (𝑣𝑣1 = 20.0, 𝑡𝑡1 = 1) as a starting point
(the first value in the compressed dataset, 〈𝑐𝑐1, 𝜏𝜏1〉). When the next value (𝑣𝑣2 =
20.3, 𝑡𝑡2 = 2) is received, the limit lines (upper and lower dashed lines) are drawn
to the new value of ±𝜀𝜀 (20.8 and 19.8 at 𝑡𝑡2, as the error bound 𝜀𝜀 is 0.5 °C) (Figure
4 (a)). When the next value is received, the limit lines are tightened if the value
extremes with error bounds (𝑣𝑣𝑖𝑖 ± 𝜀𝜀) are located inside the limit lines (Figure 4 (b)
and (c)). If the new value with error bound extremes falls outside the limit lines,
then the linear section ends in the timestamp of the previous value with the value

22

at the midpoint of the limit lines (Figure 4 (d); red solid line end point in
timestamp 4). The algorithm then starts again, with the compressed value (𝑐𝑐2, 𝜏𝜏2)
in timestamp 4 as the starting point. The compressed dataset is

LTC(𝑆𝑆) = 〈(𝑐𝑐1, 𝜏𝜏1), (𝑐𝑐2, 𝜏𝜏2), … , (𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑘𝑘)〉.

In Figure 4, the first two data pairs in the compressed dataset are (20, 1) and (20.65,
4).

FIGURE 4 LTC algorithm

The efficiency of the LTC algorithm is shown in Figure 5, in which the LTC
algorithm is used to compress the test dataset (temperature in degrees Celsius).
With an error bound 𝜀𝜀 = ±1.0 °C the entire test dataset fits into the linear section
(red solid line). If the error bound is lowered to ±0.5 °C, the test dataset is
presented with four linear lines (black dashed lines). Therefore, the compressed
dataset has five value pairs.

The LTC has unpredictable latency, and it depends on each linear section
length. The higher the CR, the longer the latency. If the data behave linearly, a
long latency is derived. When the new linear segment begins, the starting point
is known, but the direction of the following values remains unknown until the
linear segment ends, and the end point is stored in the compressed dataset.

23

FIGURE 5 LTC for the test dataset

Some slight variations in the original LTC algorithm have been developed.
In [51], a slight modification of the LTC algorithm was used. In this modified
version, the out-of-bound (first value capped off from the linear segment) value
becomes the starting point for a new linear segment. This modified version is not
as compression efficient as the original LTC because the end point of the linear
segment is not the starting point of the next segment, as it is in the original version.
Other variations include adaptive lightweight temporal compression [52],
refined lightweight temporal compression (RLTC) [53], multidimensional
extension of the LTC method [54], direct lightweight temporal compression
(DLTC) [55], and DFan [56]. These modified versions were developed to either
minimize the data reconstruction error or improve compression efficiency. For
example, DLTC can improve the data reconstruction error, but it is achieved at
the cost of a lower CR. RLTC can improve the CR but at the cost of a more
complex algorithm.

24

As the use of IoT is evolving quickly, the energy efficiency of IoT devices has
become a significant factor. As the number of IoT devices can be very large, the
cost of one IoT device cannot be high. Thus, the technologies, components, and
solutions used in most IoT devices need to be simple and cost effective. IoT
devices typically refer to battery powered wireless devices, including sensors.
For cost efficiency and low power consumption, the microcontrollers used are
simple and computationally constrained. Moreover, memory resources are
limited. Sensor nodes are usually located in places where electricity grids are not
available. Thus, the devices are usually battery powered, and energy
consumption needs to be minimized to lengthen the lifetime of the devices.
Changing the empty batteries of numerous IoT devices located in a wide area
incurs a significant cost.

The hardware technology solutions used need to be optimized for low
energy consumption. For example, specific low-power wireless connections
developed for the IoT are available. The use of software solutions is as important
as the use of optimal hardware solutions. With suitable software solutions, it is
possible to achieve significant energy savings on IoT sensor devices. Developing
lightweight sensor data compression algorithms can help reduce sensor node
energy consumption. Compression algorithms help minimize the amount of data
required to send over a wireless connection to the network. This can reduce either
the number of transmitting periods or the amount of data transmitted in one
transmission. These compression algorithms need to be appropriate for
compressing the data achieved from sensors, and the compression should be
done in online mode for sensor data stream. Compression algorithms should be
effective for compression and computationally light to be suitable for
computationally constrained sensor nodes. CR, inherent latency, and
reconstruction error are important aspects of compression algorithms. The
efficiency of compression algorithms in compressing sensor data depends on the
type of data. For example, different environmental magnitudes behave
differently from ECG data, and some compression algorithms are more effective
for certain types of data than others. There is no general lightweight compression

3 MOTIVATION AND RESEARCH PROBLEM

25

algorithm that suits every type of data, application, and platform. The
compression algorithm used is a compromise between CR for certain types of
data, inherent latency, and data accuracy. Moreover, computational complexity
is a concern.

In this study, simple, lightweight, and easy-to-implement sensor data
compression algorithms, mainly for compressing environmental magnitudes, are
evaluated and developed. Compression algorithms have been evaluated and
developed to minimize inherent latency and to efficiently compress specifically
environmental magnitudes that behave linearly in a short time window.
Algorithms are lightweight and easy to implement in constrained sensor nodes.
The effect on the sensor node’s energy consumption is evaluated using real
experiments.

Compression algorithms have been developed for decades, but most are not
suitable for compressing data in online mode. Many algorithms are also complex
and computationally heavy. Simple and light sensor data compression
algorithms have not been focused on in recent years.

Using compression algorithms in the sensor node itself can be considered
edge computing. In edge computing, at least some of the calculations are made
in close proximity to the data source, such as a sensor. Thus, the compression of
sensor data can be considered edge computing. Sensors are fundamental
components of IoT devices, as the whole concept of the IoT is related to the data.
However, achieving data with sensors and sensor nodes is not always the most
efficient and cost-effective method. It can be useful to enrich the data obtained
from sensors with other available data. Other data can be open data available on
the internet. Weather data are common open data available on the internet to be
used in environmental solutions. Combining open data with sensor data can be
more effective than relying on sensor data alone. It can also be used to reduce the
number of IoT sensor nodes or sensors in one IoT node. Weather data can be
weather observations or weather forecast data. Combining open data to enrich
measured sensor data is also evaluated in this study.

Overall, the main idea of this study is to find simple solutions to reduce and
minimize the energy consumption of an IoT sensor node using lightweight and
easy-to-implement solutions. Methods should be suitable for use in constrained
IoT sensing devices with a wireless network connection.

26

Article I is a general overview of the different aspects of energy-efficient edge
computing. It describes the main subjects related to the topic and guides the
overall studies covered in the other articles. It also serves as a general
introduction to the topics of this dissertation and describes the importance of the
topics covered in the other articles. All the other articles deal with specific sensor
data analysis topics. Article II focuses on utilizing sensor data, together with
other available data, to make decisions. In this case, other data are the different
local weather observation data and weather forecast data. The other data used to
enrich the measured sensor data can be open data available from the internet,
other data that can be restricted, or company confidential data. Articles III–VIII
deal with linearity-based compression algorithms and their utilization and
performance to compress sensor data efficiently and with low energy
consumption. The main idea of Articles III–VIII is to compress environmental
sensor data efficiently in real-time using simple and computationally light
compression algorithms. One of the main targets is to reduce energy
consumption with sensor data compression and to lengthen the lifetime of
battery powered IoT sensor nodes. The algorithms’ inherent latency is also a
significant concern.

Article II presents how sensor data can be combined with other available
data. The other data are open data available from the internet and more restricted
data that are not openly available for everyone. Other data have been used to
enrich the data gathered with sensors. Not all information needs to be measured
individually, but data already available from other sources can be used. It may
also lighten the need for accurate and continuous sensor measurement and thus
can reduce energy consumption overall, even though energy consumption was
not a concern in the pilot case presented in the article.

Articles III and V present new versions of linearity-based compression
algorithms suitable for sensor nodes. Methods are developed specially for
compressing sensor data streams in online mode. Article V uses the results of
Article III, and the main consideration is to minimize the algorithms’ inherent
latency. The algorithms developed in Article III are further developed in Article

4 OVERVIEW OF INCLUDED ARTICLES

27

V. Article IV also uses the results obtained in Article III. The algorithms
developed in Article III are evaluated in Article IV using multiple datasets with
varying error bounds to determine whether there is a correlation between the
characteristics of the dataset and the CR obtained using a particular linearity-
based compression algorithm. The correlation found in Article IV can be used to
evaluate the performance of a certain compression algorithm to compress a
dataset with certain characteristics. In Articles VI and VII, the compression
algorithms developed in Articles III and V are implemented on a sensor node
that utilizes a LoRa network to transmit the data to the cloud. The effect of the
algorithms on the energy consumption of the sensor node is evaluated and tested.
In Article VIII, the real-time linear regression-based temporal compression (RT-
LRbTC) algorithm presented in Article V is developed further. Thus, two new
versions of the algorithm are developed, and their performance is evaluated.

4.1 Article I: Requirements for Energy Efficient Edge Computing:
A Survey

O. Väänänen and T. Hämäläinen, ”Requirements for Energy Efficient Edge
Computing: A Survey,” in The 18th International Conference on Next Generation
Wired/Wireless Advanced Networks and Systems NEW2AN 2018. St. Petersburg,
Russia, Aug. 2018, doi: https://doi.org/10.1007/978-3-030-01168-0_1.

Overview of Article I

Article I surveys publications on different edge computing methods from the
perspective of energy consumption. The purpose of Article I is to go through the
current situation of the different methods for reducing overall energy
consumption in IoT end devices or in the so-called edge devices. It deals with the
fundamentals of energy-efficient edge computing and the many different aspects
of edge devices and edge computing. Different challenges, benefits, and
advantages are discussed in the article.

The article discusses the different aspects of the following terms: IoT, edge
computing, and fog computing. The benefits and challenges between edge/fog
computing and cloud computing are compared. According to the literature,
cloud computing can cause challenges in different latency critical IoT
applications [57]. Applications that are sensitive to latency include smart traffic
and intelligent transportation systems, autonomous vehicles, and virtual and
augmented reality applications. Various applications related to safety-critical
and sensitive data may not rely on cloud connection. Cloud computing cannot
meet the quality of service requirements for latency and safety-critical systems.
In smart transportation and vehicle systems, it is possible to use vehicle-to-
vehicle connections or data achieved from vehicles to avoid collisions. As such
an analysis is time and latency critical, it is impossible to rely on cloud computing.
These decisions must be made either locally or in close proximity at a Cloudlet
[58]. An overview of the general IoT architecture is illustrated in Figure 6 [59].

https://doi.org/10.1007/978-3-030-01168-0_1

28

FIGURE 6 Edge and fog architecture in IoT [59].

The edge refers to the close proximity of the sensor and the sensor node. An
edge device usually refers to the sensor node itself. A sensor node is commonly
wirelessly connected to the network gateway, and it includes a microcontroller,
which is constrained and limited by memory. As the number of edge devices can
be large, edge devices are usually battery powered. This nature of the IoT sensor
node pushes for the requirements for the energy efficiency of these end nodes.
Sending data wirelessly is recognized as the most energy-intensive task for
wireless IoT devices. Changing the batteries of a large number of IoT nodes can
be costly. Thus, maximizing battery lifetime can be a cost-effective solution.

The term fog refers to the next level in a network hierarchy, as shown in
Figure 6. Different network elements, such as gateways and routers, can be
described as fog devices. Typically, fog devices are computationally more
powerful than edge devices. As they are normally mains-powered devices,
energy efficiency is not so much a critical aspect in fog devices.

One great challenge in the utilization of edge and fog computing is the
heterogeneous nature of devices. It is difficult to develop generic solutions to be
used in different edge devices, which can have different operating systems,
wireless connection protocols and technologies, and hardware platforms. Many
simple sensor nodes are based on simple embedded microcontrollers, while some
edge devices may be based on Linux-based single-board computers, such as
Raspberry Pi. In addition to different platforms, applications also vary; thus,
there are no generic solutions available for different IoT devices. For more
powerful single-board computers, it is possible to use virtualization or a

29

container-based approach. This kind of approach makes it possible to run the
same applications with different platforms and operating systems.

Various methods of reducing the energy consumption of wireless sensor
networks are effective, as sending data wirelessly is the most energy-consuming
activity of a wireless node. Article I lists many energy-efficient routing
algorithms used in traditional wireless sensor networks. These routing
algorithms are not suitable for IoT sensor networks. In IoT sensor networks, the
end nodes can be distributed in a large area; thus, the nodes are not wirelessly
connected to each other, such as in a traditional sensor network. That kind of IoT
sensor network utilizes a star-type protocol in which the nodes are directly
connected to the base station (gateway), which can be located at a long distance.
To solve this challenge, several IoT network technologies have been developed,
such as LoRa, SigFox, and NB-IoT. All of these have long ranges, use a star
topology, and have low energy consumption. As a drawback to low energy
consumption, the data rate is limited in these wireless technologies but sufficient
for transmitting sensor data.

As wireless transmission and receiving are the most energy-intensive
activities in a wireless sensor node, reducing the transmitted data is an effective
method to reduce energy consumption in the IoT node and thus lengthen the
lifetime of the battery powered device. Article I lists and surveys several data
compression methods suitable for constrained IoT sensor nodes. Data
compression needs to be conducted on the edge. As IoT sensor nodes have a
simple microcontroller with limited computational power and limited memory,
these impose requirements for the compression algorithm used. The compression
algorithm should be able to compress the sensor data stream in online mode. The
compression methods listed in Article I are lossy methods. The methods can be
categorized into two groups: time domain and transform domain. The
effectiveness of the compression method to compress data depends on the
characteristics of the data. Therefore, there is no universal compression algorithm
suitable and effective for every data type. LTC is a popular light and effective
time domain compression algorithm for sensor data. It is especially suitable for
environmental data compression, such as temperature and humidity.

Article I also briefly discusses the different IoT protocols. The typical
communication data protocols are MQTT, CoAP, XMPP, and AMQP. MQTT and
CoAP are the most appropriate for constrained IoT devices.

As IoT devices are connected to the internet, security is an important issue.
The data transmitted via the internet can be sensible and need to be kept in secret.
One solution is to encrypt transmitted data. The encryption method should be
light because IoT devices are computationally constrained. Lightweight
encryption algorithms have been developed and are available. A potential
lightweight asymmetric encryption algorithm called Aaβ is presented in [60], and
it is compared with the traditional RSA encryption algorithm in [61].

30

Author’s Contribution to Article I

Olli Väänänen proposed the general topic, and Article I served as a survey to find
more detailed topics for further research. Olli Väänänen wrote and revised the
manuscript. Timo Hämäläinen supervised the study and revised the manuscript.

4.2 Article II: Predictive pumping based on sensor data and
weather forecast

O. Väänänen, J. Hautamäki and T. Hämäläinen, “Predictive pumping based on
sensor data and weather forecast,” 2019 IEEE Sensors Applications Symposium
(SAS), Sophia Antipolis, France, 2019, pp. 1–5, doi:
https://doi.org/10.1109/SAS.2019.8706018.

Overview of Article II

An IoT-based system for controlling pumping from a water reservoir while
drying peat bog has been developed. The IoT system that controls pumping
makes decisions based on several sensors and other data. The data used in
decision making are local water-level data, local rainfall measurements, and
weather forecasts obtained from the Finnish Meteorological Institute (FMI) open
data. The water pump is driven by a frequency converter, which can control the
pump’s rotational speed in stepless mode. The IoT system is used to control the
frequency converter in such a way that pumping can be started before the water
level in a reservoir reaches the trigger level. In Article II, the sensor data (water
level) have been enriched with other data. Other data that have been used are
open data (weather forecasts) and local weather observation data from separate
weather services (not open data).

Drying peat bog is important in peat production. Water is directed from the
peat bog through ditches to the local water reservoir. The water is then pumped
from the reservoir to the filtering field. The filtering field is a large area with small
trees, plants, and other vegetation. Water is filtered through this field before it
enters nature and water bodies. Water needs to be filtered because otherwise, it
will be contaminated with solids and other substances, which can weaken the
water quality in water bodies. The filtering field filters more effectively if the
water flow is even. Traditionally, the pumping period starts when the water level
reaches a certain level in the water reservoir and stops when the water level
reaches the lower limit level. Pumping occurs at nominal speed, thus causing the
water rush in, bursting toward the filtering field. This burst can be seen as an
uneven water flow after the field. Between pumping periods, the water flowing
to the bodies of water can be minor.

The overall pump control system is presented in Figure 7. A water level
transmitter has a traditional 4–20 mA current signal, which is used in automation
technology due to its robustness against electromagnetic interference. This mA
signal is converted to a digital I2C-bus signal, which can be connected to the

https://doi.org/10.1109/SAS.2019.8706018

31

Raspberry Pi platform. The Raspberry Pi sends the water level information
continuously through 3G/4G connection to the ThingsBoard.io IoT platform,
which operates in the cloud server. ThingsBoard.io is an open-source IoT
platform that can be used to visualize different IoT data and simple data analysis.
The local weather station sends the data to the Weatherlink cloud server. The
ThingsBoard.io platform obtains local weather data from Weatherlink. The
weather forecast is obtained from the FMI open data service. The FMI updates
the weather forecast every 6 h. This study is interested only in rainfall forecasts.

FIGURE 7 The IoT-based pumping control system.

The algorithm developed for controlling the frequency converter and pump
is simple. The algorithm inputs are the rainfall forecast, the last hour of
accumulated rainfall, and the actual water level. The overall system creates a
manipulated current signal (4–20 mA) to control the frequency converter. If the
water level is low or if no rainfall has been detected during the last hour and no
rainfall is predicted, then the created current signal is the same received from the
water level transmitter. If the water level is over a certain trigger level, and if the
local weather station has detected enough rain during the last hour and/or the
weather forecast predicts rainfall during the next hour, the current signal value
increases, and the pumping may start in anticipation if the current signal created
is sufficiently high.

32

One challenge is the uncertainty of weather forecasts. The retrospect
between the real rainfall data from the local weather station and the weather
forecast data demonstrates a low correlation. Thus, the algorithm may predict
pumping due to predicted rainfall and start pumping even if rain has never
started.

Results of Article II

In the pilot case, the algorithm’s parameters were the best estimates because no
previous measurement data were available. The algorithm parameters were
tuned during the pilot in autumn 2018. The system proved to be a potential one
to even out the pumping, but the weather conditions during the piloting period
were not normal. Rainfall was minimal during that autumn, and tuning the
algorithm further was not possible. The basic operation of the IoT control system
functioned well, and with fine tuning of the algorithm’s parameters, the system
could be used to even out pumping when the rain had just started or when rain
was coming. The system utilizes local sensor data and open data from the internet
and combines the data with the algorithm to make decisions.

Author’s Contribution to Article II

Olli Väänänen developed the system-level functionality of the IoT pumping
system, developed the control algorithm, participated in constructing the IoT
system, participated in analyzing the results, and wrote and revised the
manuscript. Jari Hautamäki participated in developing the IoT pumping system,
writing, and revising the manuscript, and supervising the pilot case. Timo
Hämäläinen supervised the entire study and revised the manuscript.

4.3 Article III: Compression Methods for Microclimate Data
Based on Linear Approximation of Sensor Data

O. Väänänen and T. Hämäläinen, ”Compression Methods for Microclimate Data
Based on Linear Approximation of Sensor Data,” The 19th International Conference
on Next Generation Wired/Wireless Advanced Networks and Systems NEW2AN 2019.
St. Petersburg, Russia, Aug. 2019, doi: https://doi.org/10.1007/978-3-030-30859-
9_3.

Overview of Article III

This article evaluates the ability of different simple sensor data compression
algorithms to compress environmental sensor data and to further develop certain
compression algorithms. Using computationally light compression algorithms to
compress the sensor data stream in an edge device, it is possible to reduce the
number of radio transmitting periods. The radio transmitter is the most energy-
intensive component of a wireless sensor node while transmitting. With the right
compression algorithm with an acceptable reconstruction error, the energy

https://doi.org/10.1007/978-3-030-30859-9_3
https://doi.org/10.1007/978-3-030-30859-9_3

33

consumption of the end device can be reduced, and data accuracy can be
maintained at an acceptable level at the same time.

Linear regression-based compression algorithms have been developed and
presented in the literature [37,45,62,63]. Most of the compression algorithms
presented in the literature are suitable for compressing a certain dataset that is
already available. In this study, the main idea is to compress sensor data value
by value when new data values are available. One well-known and suitable
algorithm for compressing the sensor data stream is LTC. LTC was first
introduced in [29], but a similar compression algorithm was already presented
several years earlier called Fan for ECG data [50]. In Article III, the authors
present a new version of the linear regression-based algorithm called linear
regression-based temporal compression (LRbTC) and its modification, called
modified linear regression-based temporal compression (M-LRbTC). These
regression-based algorithms were developed to compress sensor data stream
value by value in online mode. These algorithms are also simple and
computationally light.

The ability of LTC and M-LRbTC algorithms to compress real
environmental sensor data is evaluated and compared with the DCT method.
The microclimate datasets used are from the FMI open data service. The datasets
are from the whole-year 2018 values for temperature, humidity, and wind speed
from the Salla Naruska measurement station. The measurement interval in the
datasets is 10 minutes. Datasets with 1-h measurement intervals are tested for
comparison. The algorithms’ ability to compress datasets is evaluated using
MATLAB simulation. Even though full datasets are available, data compression
is performed value by value as the data are measured in online mode. The ability
of compression algorithms to compress data is evaluated using CR, with different
reconstruction errors (error bound) allowed.

Results of Article III

LTC proved to be the most effective compression algorithm among the tested
ones for environmental data. The developed M-LRbTC algorithm was more
effective than DCT when the DCT had a window size of 5 values. The M-LRbTC
benefits from increasing the N value from 3 to 4 or 5 but falls behind the LTC
significantly. For the tested temperature data with a 10-min measurement
interval and error bound ε = 0.5 °C, the CR values were 3.9–4.8 for M-LRbTC and
9.5 for LTC. For the air pressure data with a 10-min interval and error bound ε =
0.5 hPa, the CR values were 8.94–10.75 for M-LRbTC and 28.22 for LTC. For the
wind speed data with 10-min average values and error bound ε = 0.5 m/s, the
CR values were 2.62–3.18 for M-LRbTC and 5.09 for LTC. Thus, the CR values
were significantly higher for air pressure data than for the other data types
because air pressure data behave more linearly with the chosen error bound.

In Article III, the idea of modifying the M-LRbTC further to be more suitable
for real-time sensor stream compression is presented. The latency of the
algorithm could be improved by sending the regression line coefficients with a
timestamp, not the actual values. The receiver knows that the future values
continue to follow the regression line with the allowed reconstruction error as

34

long as the new regression line parameters are not received. This kind of
modified version is developed, evaluated, and presented in Article V.

Author’s Contribution to Article III

Olli Väänänen proposed the topic, developed the new algorithms, programmed
the algorithms using MATLAB, evaluated the algorithms, and wrote and revised
the manuscript. Timo Hämäläinen supervised the study and revised the
manuscript.

4.4 Article IV: Linear Approximation Based Compression
Algorithms Efficiency to Compress Environmental Data Sets

O. Väänänen, M. Zolotukhin, and T. Hämäläinen, ”Linear Approximation Based
Compression Algorithms Efficiency to Compress Environmental Data Sets,” In:
Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) Web, Artificial
Intelligence and Network Applications. WAINA 2020. Advances in Intelligent
Systems and Computing, vol. 1150. Springer, Cham. doi:
https://doi.org/10.1007/978-3-030-44038-1_11.

Overview of Article IV

In Article IV, the effect of dataset characteristics on linearity-based algorithms’
ability to compress effectively is evaluated. The ability of different compression
algorithms to compress data depends on the data characteristics. For example,
environmental microclimate data differ greatly from ECG data, which have
periodical behavior. Data from an acceleration sensor in moving vehicles (cars,
motorcycles, etc.) or in wearable well-being devices can be unpredictable and
have sudden changes. There is no compression algorithm that suits every type of
data.

In this article, the effect of dataset characteristics on the ability of various
linearity-based compression algorithms to compress data is evaluated. The idea
is to examine whether the dataset characteristics can be used to estimate the CR
achieved with a certain compression algorithm. Even though the sensor values
are not known in advance, the environmental values of a certain geological
location behave similarly year by year. Thus, it is possible to expect that future
values have behaviors similar to history values.

The evaluated linearity-based algorithms are LTC and LRbTC (i.e., M-
LRbTC, which is presented in Article III) with N = 3, 4, and 5. DCT is also
evaluated as a comparison. The CR of the compression algorithms is evaluated
for different dataset characteristics. The datasets used are temperature, air
pressure, and wind speed data. The datasets used are taken from the FMI open
data service. All environmental magnitudes measured are from the 2018 Salla
Naruska measurement station data. The whole-year 2018 datasets with a 10-min
measurement interval are used, and they are divided into monthly datasets with
10-min, 20-min, 30-min, 40-min, 50-min, and 1-h measurement intervals. A

https://doi.org/10.1007/978-3-030-44038-1_11

35

whole-year dataset is also used with the same measurement intervals. In total, 78
different datasets are used for each environmental magnitude.

The dataset characteristics evaluated are the average absolute change
between consecutive measurements (AC) and the standard deviation of the
change between consecutive measurements (SD). The error bounds used are
0.5 °C for the temperature datasets, 0.5 hPa for the air pressure datasets, and 0.5
m/s for the wind speed datasets. The wind speed datasets are 10-min average
values.

The compression algorithms are programmed using MATLAB, and both
AC and SD values are evaluated for each dataset. The correlation between the CR
and the AC and SD values is examined from the graphs, and the trend lines are
determined using MATLAB. The trend line chosen is visually the best-fit
polynomial regression line. The ability of the polynomial regression line to
estimate the CR for the dataset with a certain AC or SD is estimated using the
norm of the residual value, which is the measure of the goodness of the line fit
for the data values.

Results of Article IV

Correlation was clearly seen in the graphs between the AC and SD values with
CR for all types of environmental data tested. Generally, the AC value estimated
the CR better than the SD value for all types of data tested. This was visually
observed in the graphs and in the norm of the residual values. For the
temperature data, the best-fit trend lines were eighth-degree polynomials; for the
air pressure data, the best-fit trend lines were fourth-degree polynomials; and for
wind speed data, the best-fit trend lines were also fourth-degree polynomials.
The best-fit trend lines were chosen by visually estimating the fit together with
the norm of the residual values.

Article IV shows that it is possible to predict the CR of the selected
compression algorithm for data with certain AC and SD values. The correlation
was better between AC and CR than between SD and CR. The AC value is also
easier to calculate than the SD value. The results of Article IV can be used to select
a suitable compression algorithm and to estimate the lifetime of a battery
powered sensor node using a certain compression algorithm. The strongest
correlation between the quality factors and CR was observed in the wind speed
data and the worst in the air pressure data. The CR was the highest for air
pressure data and the lowest for wind speed data with each compression
algorithm. These results are for certain error bounds selected.

Author’s Contribution to Article IV

Olli Väänänen proposed the topic, conducted the evaluations using MATLAB,
evaluated the results, and wrote and revised the manuscript. Mikhail Zolotukhin
revised and recommended improvements to the manuscript and its structure.
Timo Hämäläinen supervised the study and revised the manuscript.

36

4.5 Article V: Sensor Data Stream On-line Compression with
Linearity-based Methods

O. Väänänen and T. Hämäläinen, "Sensor Data Stream on-line Compression with
Linearity-based Methods," 2020 IEEE International Conference on Smart Computing
(SMARTCOMP). Bologna, Italy, 2020, pp. 220–225, doi:
https://doi.org/10.1109/SMARTCOMP50058.2020.00049.

Overview of Article V

The linearity-based compression algorithms presented in the literature are best
suited for datasets that are already available or for sensor data systems that are
not latency-critical. In Article V, the compression algorithms are compared by
inherent latency and CR. A new version of LRbTC, called RT-LRbTC, is presented.
It is a variation of the M-LRbTC algorithm that significantly improves latency.
Therefore, it is more suitable for applications that have latency requirements.

Some temporal compression algorithms, such as PCA, APCA, and PWLH,
have been presented and explained. These algorithms are simple but do not have
predictable latency. The linear regression-based algorithms (i.e., LRbTC and M-
LRbTC) presented in previous articles are also explained, and their inherent
latency is described. LTC is used for comparison, but it has the drawback of
having a non-predictable latency, which is long if the CR is high.

The short latency and predictability of RT-LRbTC are based on calculating
the new regression line from the sensor values already available. The RT-LRbTC
algorithm uses the three last available values (N = 3) to calculate the regression
line. M-LRbTC needs to wait for new measurement values when a new
regression line is required, adding to the inherent latency. The output of the RT-
LRbTC algorithm is the parameters of the regression line (slope and base) and
the timestamp of the starting point of the line. When the line ends (value fall off
the regression line by more than one error bound), the new line parameters are
immediately calculated and stored or transmitted to the sink. Thus, only one
transmission cycle per regression line is required, compared with the two
transmitting periods needed in the M-LRbTC algorithm.

In Article V, the performance of the selected algorithms is evaluated by
compressing real environmental datasets. The magnitudes of the datasets are
temperature, air pressure, and wind speed. The CRs of the algorithms are
evaluated using MATLAB with different error bounds. The error bounds are 0.1–
2.0 °C for the temperature dataset, 0.1–2.0 hPa for the air pressure dataset, and
0.1–2.0 m/s for the wind speed dataset.

Results of Article V

The compression efficiency of RT-LRbTC was lower than that of M-LRbTC
because the compressed data had more regression lines. However, RT-LRbTC
benefited from the fact that only one transmitting period was required for each
regression line, so its overall efficiency was better than that of the M-LRbTC

https://doi.org/10.1109/SMARTCOMP50058.2020.00049

37

algorithm. LTC was used for comparison, but it is not suitable for compressing
the online sensor data stream because it has non-predictable latency. The latency
is also long if the algorithm compresses the data stream efficiently. LTC had
superior CR for every dataset tested. RT-LRbTC proved to be an efficient
compression algorithm with a short and fixed latency, thus making it suitable for
solutions that have requirements for latency.

RT-LRbTC was originally developed to achieve short inherent latency. RT-
LRbTC has the shortest latency of the presented algorithms. Its latency in the
linear section and when calculating the new regression line is one measurement
interval long (∆𝑡𝑡). The RT-LRbTC algorithm is simple and computationally light,
suitable for compressing environmental sensor data streams in online mode.

Author’s Contribution to Article V

Olli Väänänen proposed the topic, developed a new version of the algorithm,
conducted the evaluations using MATLAB, examined the results, and wrote and
revised the manuscript. Timo Hämäläinen supervised the study and revised the
manuscript.

4.6 Article VI: LoRa-Based Sensor Node Energy Consumption
with Data Compression

O. Väänänen and T. Hämäläinen, "LoRa-Based Sensor Node Energy
Consumption with Data Compression," 2021 IEEE International Workshop on
Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 2021, pp. 6–11,
doi: https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434.

Overview of Article VI

In Article VI, linear regression-based compression methods are implemented on
an embedded sensor board, which has LoRa connectivity to the network. The
embedded board is an Arduino MKR WAN 1310, which has an Arm Cortex-M0+-
based microcontroller and a Murata LoRa module. A DHT22 temperature and
humidity sensor is connected to the board. The LoRa network used is a
commercial LoRa network in Finland operated by Digita. The compression
algorithms implemented on the embedded board are LTC and RT-LRbTC. RT-
LRbTC is tested with two versions, one with N = 3 and the other with N = 4. The
embedded board is programmed to measure the temperature value with a
DHT22 sensor periodically and to apply the chosen compression algorithm to the
sensor data stream value by value when new values are measured. If the data
need to be transmitted after the measurement and compression period, the LoRa
connection is used to transmit the compressed data value to the network.
Between the measurement and compression periods, the device is programmed
to go in deep sleep mode.

The energy consumption of the embedded module is measured in different
operational phases using a digital multimeter (DMM) and a digital oscilloscope.

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434

38

The DMM is used to measure current consumption in deep sleep mode. The
supply voltage of the battery is simultaneously measured with an oscilloscope.
These measured values are used to calculate the power consumption in deep
sleep mode. Current consumption during active periods cannot be measured
with a DMM because the current value changes during the active period,
depending on the operation phase of the board. The current consumption and
power consumption are measured with and without a compression algorithm to
determine whether the algorithm calculations have any effect on power
consumption. The different operational and measurement scenarios are the deep
sleep phase, the sensor measurement and algorithm calculations phase, and the
LoRa transmission phase. Energy consumption of the sensor measurement and
algorithm calculation phase is measured using the current probe of the
oscilloscope. The current probe is set to measure the current in the battery wire,
and the other oscilloscope channel is used to measure the supply voltage in the
board’s battery connector with a voltage probe. Energy consumption is measured
using the oscilloscope’s math functions to calculate the overall energy consumed
in the oscilloscope screen time. The energy consumption of deep sleep is also
measured with the same setup and subtracted from the total energy consumption,
resulting the measurement and algorithm phase’s energy consumption only. The
energy consumption of the LoRa transmission is measured similarly, except that
the previously measured measurement and energy consumption of the
algorithm are also subtracted from the result, giving only the energy
consumption of the LoRa transmission. The energy consumption of LoRa
transmission consists of the energy consumption of the transmitting uplink and
the receiving downlink. As the LoRa transmitting setup is not adjusted, the
uplink uses only the Spreading Factor 10, and the downlink varies between the
Spreading Factor 9 and 12. Energy consumption is measured in both cases.

Total energy consumption comprises the energy used in deep sleep mode,
the energy used for measurement and algorithm processing, and the energy
consumed during LoRa transmission. The measurement and algorithm phase
appears at regular intervals. The LoRa transmission phase appears when there is
a need to send the results of the compression to the sink. Thus, the algorithm’s
CR affects when and how often the transmission phase appears. The total energy
consumption is approximated using the following equation:

𝑊𝑊tot = 𝑃𝑃ds𝑡𝑡𝑥𝑥 +
𝑡𝑡𝑥𝑥
∆𝑡𝑡
𝑊𝑊𝑀𝑀 +

𝑡𝑡𝑥𝑥
CR∆𝑡𝑡

𝑊𝑊𝑠𝑠,

where 𝑃𝑃ds is the deep sleep power consumption, 𝑡𝑡𝑥𝑥 is the overall time, ∆𝑡𝑡 is the
measurement interval, 𝑊𝑊𝑀𝑀 is the measurement and algorithm phase energy
consumption, 𝑊𝑊𝑠𝑠 is the LoRa transmission event energy consumption, and CR is
the CR of the algorithm implemented for the measured data (approximation).

If the overall energy available is known, such as battery capacity, then it is
possible to estimate the device lifetime by solving the overall time 𝑡𝑡𝑥𝑥 from the
previous equation.

39

Results of Article VI

Every measurement was repeated at least 10 times to improve the reliability of
the measurement results; thus, the average values were used. Deep sleep current
consumption was 117 µA, which is not a low value for a modern microcontroller
sensor board. As the supply voltage was 3.99 V, the power consumption in deep
sleep was 0.46683 mW. The energy consumption of the measurement and
algorithm phase varied approximately at 4.6–4.8 mWs, depending on the
compression algorithm implemented with or without an algorithm. Energy
consumption was the lowest without an algorithm implemented, but the
measurement inaccuracy for the low-level currents using an oscilloscope current
probe was so low that the results were close to each other. Thus, it was impossible
to draw a difference between the results. The difference in the results between
the different algorithms and those without the algorithm was negligible. The
LoRa transmission energy consumption varied slightly between the compression
algorithm implemented with and without the algorithm. Using an uplink SF10
and downlink SF9, the total energy consumption was the lowest for LTC (61.68
mWs) and the highest for RT-LRbTC, N = 4 (73.14 mWs), but the difference
between the algorithms was, again, negligible. Using the uplink SF10 and the
downlink SF12, the lowest value was found in LTC (108.80 mWs) and the highest
in RT-LRbTC, N = 3 (113.40 mWs). The results varied from measurement to
measurement more than the differences between the algorithms and those with
no algorithm implemented. Therefore, the calculations of the algorithm did not
show any significant effect on energy consumption.

For example, Article VI presents a scenario with a 2,000 mAh battery
lifetime with a measurement interval of 10 min. The results showed that RT-
LRbTC could extend the device’s lifetime by 25.2%. With a rather long
measurement interval, the device’s deep sleep energy consumption becomes
determining for the device lifetime.

Author’s Contribution to Article VI

Olli Väänänen proposed the topic, implemented the algorithms for the
embedded sensor board, conducted the measurements, analyzed the results, and
wrote and revised the manuscript. Timo Hämäläinen supervised the study and
revised the manuscript.

4.7 Article VII: Efficiency of temporal sensor data compression
methods to reduce LoRa-based sensor node energy
consumption

O. Väänänen and T. Hämäläinen, ”Efficiency of temporal sensor data
compression methods to reduce LoRa-based sensor node energy
consumption," Sensor Review, Vol. 42 No. 5, pp. 503–516, 2022, doi:
https://doi.org/10.1108/SR-10-2021-0360.

https://www.emerald.com/insight/publication/issn/0260-2288
https://doi.org/10.1108/SR-10-2021-0360

40

Overview of Article VII

Article VII is based on Article VI and is a comprehensive study of the topic. The
measurement setup is improved to be more accurate, and different LoRa setup
variations are evaluated and measured. This study evaluates the possible
reduction in the overall energy consumption of the LoRa sensor node using
linearity-based compression algorithms. By compressing sensor data in online
mode, LoRa transmission periods can be reduced, thus decreasing overall energy
consumption.

The same compression algorithms as in Article VI are implemented on an
Arduino MKR WAN 1310 evaluation board. The implemented compression
algorithms are LTC and RT-LRbTC, with N = 3 and 4, respectively. A situation
without a compression algorithm implemented is used for comparison. The
Arduino MKR WAN 1310 has LoRa-connectivity and uses a lithium–polymer
battery as power supply. The DHT22 sensor is used to measure the ambient
temperature. The test setup is illustrated in Figure 8.

FIGURE 8 Arduino MKR WAN 1310 setup.

The active mode current consumption is measured using a shunt resistor
method in which a resistor of a known value is in a series in supply. By measuring
the voltage across the resistor, it is possible to calculate the current from Ohm’s
law equation, I = U/R. The voltage across the shunt resistor can be measured with
an oscilloscope using a differential voltage probe or two normal voltage probes.
In this study, the resistor’s voltage is measured with two active voltage probes.
The shunt resistor is 10 Ω. The shunt resistor measurement is more accurate than
the current probe measurement used in Article VI. The shunt resistor
measurement circuit is presented in Figure 9. The current can be obtained from
the measured values as follows:

𝐼𝐼 =
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅

41

The power consumption can be calculated from the current value if the supply
voltage is known. Supply voltage is measured with an oscilloscope passive probe.
The power consumption of the device is as follows:

𝑃𝑃 = 𝑉𝑉supply𝐼𝐼

𝑉𝑉supply is the same as 𝑉𝑉2 but measured separately in this study.

FIGURE 9 Shunt resistor circuit.

Deep sleep current consumption is measured with a DMM because it is
more accurate for µA level measurements than the shunt resistor method. The
sensor measurement process and the algorithm’s energy consumption with and
without the implemented algorithms are measured using the shunt resistor
method. The energy consumption of the LoRa transmission is measured with
every Spreading Factor (SF7–SF12) setting using the shunt resistor setup.

Results of Article VII

The deep sleep power consumption 𝑃𝑃𝑑𝑑𝑠𝑠 was 0.46683 mW, similar to Article VI.
The sensor measurement and the algorithm’s energy consumption varied
between 4.88 mWs and 4.98 mWs (average values). The difference between the
algorithms and no algorithm implemented was negligible. Thus, the compression
algorithm calculations were not adding the energy consumption. The LoRa
transmission energy consumption depended on the SF used. The energy
consumption in the transmission was the highest when both the uplink and
downlink used SF12, and the downlink was received. Energy consumption was
the lowest with the uplink SF7, and the downlink was not received.

The average power consumption of the LoRa sensor node was estimated
from the measured results and with certain CRs for each compression algorithm.
The CRs of the compression algorithms were taken from Article V. CR = 10 was
used for LTC and CR = 6 for the RT-LRbTC algorithms. The downlink was not
received every time, even though it was sent from the network side. Receiving
the downlink message consumes more energy, but it is the normal scenario and
should be used when estimating the device’s power consumption and overall
lifetime. The average power consumption is the highest when both the uplink
and the received downlink use SF12. The power consumption reduction with the
compression algorithm is the highest with the uplink SF12 and downlink SF12.
With the uplink SF7 and the received downlink SF9, the difference in power
consumption between the algorithms and no implemented algorithms is small.

42

The lifetime of the LoRa sensor node was evaluated with a 2,000 mAh
battery. In the worst-case scenario, the device always transmits with an SF12
setting, and the SF12 downlink message is received. The device lifetime without
a compression algorithm implemented was 343 days if the measurement interval
was 10 min. If the compression algorithm were implemented, then the lifetime
would be 562 days with RT-LRbTC and 596 days with the LTC algorithm. If the
device was transmitted with a lower SF, the lifetime would increase, and the
effect of the algorithms would not be as significant.

The study shows that simple compression algorithm calculations do not
add to the device’s energy consumption but can significantly decrease overall
energy consumption by reducing wireless transmission periods. With a long
measurement interval, deep sleep consumption has become the determining
factor for device lifetime.

Author’s Contribution to Article VII

Olli Väänänen proposed the topic, implemented the algorithms on an embedded
sensor board, performed the measurements, analyzed the results, and wrote and
revised the manuscript. Timo Hämäläinen supervised the study and revised the
manuscript.

4.8 Article VIII: Linearity-based Sensor Data Online
Compression Methods for Environmental Applications

O. Väänänen and T. Hämäläinen, ”Linearity-based Sensor Data Online
Compression Methods for Environmental Applications,” 6th Conference on Cloud
and Internet of Things (CIoT), Lisbon, Portugal, 2023, pp. 149-156, doi:
https://doi.org/10.1109/CIoT57267.2023.10084892.

Overview of Article VIII

In this study, some well-known computationally lightweight temporal
compression algorithms are evaluated in terms of the CR and reconstruction
error quality metrics. The evaluated and tested algorithms are LTC, M-LRbTC
with different N values, RT-LRbTC, and two new versions derived from RT-
LRbTC. The new versions, RT-LRbTC-2Δt and RT-WLRbTC-2Δt, are presented
in this article. Special attention is given to the inherent latency of the algorithms
and the suitability of algorithms to compress sensor data in online mode. The
algorithm efficiency is evaluated using the CR. The reconstruction error is
evaluated using the RMSE values. The performance of the algorithms is tested
using real environmental data from two different weather stations: one located
in Lapland, Finland, and the other in the southernmost part of Finland. The
environmental datasets are the temperature, air pressure and wind speed
datasets for the whole year of 2019. All datasets are measured at 10-min
measurement intervals. The results show that the method with the best
compression efficiency also has the highest reconstruction error, with a certain

https://doi.org/10.1109/CIoT57267.2023.10084892

43

error bound. Moreover, the algorithm with the best CR (LTC) has the most
unpredictable and the longest inherent latency; thus, it is not suitable for online
sensor data stream compression. The two new algorithms developed and
presented improve the compression efficiency compared with the original RT-
LRbTC but at the cost of a longer but still predictable inherent latency. They
provide a usable compromise between their CR and inherent latency compared
with the original RT-LRbTC algorithm.

RT-LRbTC-2Δt is similar to RT-LRbTC, except that the new regression line
is calculated with one value from a previous linear line (the last value that fits in
the previous line) and two new values. Thus, waiting for one measurement
interval is required to obtain the second new value, adding inherent latency to
2Δt in total. The main idea is to wait for one new value, as it is expected to predict
future values better than already available previous values and to maintain the
inherent latency in a reasonably short time.

The RT-WLRbTC-2Δt algorithm is similar to RT-LRbTC-2Δt, but it utilizes
a weighted linear regression instead of a normal linear regression. Certain values
are weighted in a weighted linear regression. In this algorithm, the last value is
used twice, giving it a double weight. Again, the main idea is the expectation that
the latest value predicts future values better than the already available previous
values.

Results of Article VIII

LTC had the best compression efficiency, but because of its unpredictable latency,
it was not suitable for compressing sensor data streams if there were
requirements for inherent latency. It also had the highest RMSE values for a
certain error bound.

Two new algorithm versions, RT-LRbTC-2Δt and RT-WLRbTC-2Δt,
presented better performance than RT-LRbTC, but the improvement was not
significant, at least for the datasets used. Using the weighted linear regression
did not lead to any better performance compared with the normal linear
regression. The newly developed algorithms benefited from the fact that they
required only one transmitting period for each linear regression line. Overall, the
results for the linear regression-based algorithms were similar.

The performance of the M-LRbTC algorithm was improved by increasing
the N from 3 to 4 or 5. This led to more complex calculations and added inherent
latency when calculating the new regression line.

The RMSE values were similar for each linear regression-based algorithm.
Overall, all the compression algorithms showed the best performance for air
pressure data. The air pressure dataset characteristics predicted this because the
average change (AC) and standard deviation (SD) values were smaller than those
for the temperature and wind speed data.

The original RT-LRbTC had the shortest latency. The new algorithms had
higher inherent latency but slightly better performance for the datasets used.
Thus, the two new algorithms can be used as a compromise between short
latency and compression performance.

44

Author’s Contribution to Article VIII

Olli Väänänen proposed the topic, developed new versions of the algorithm,
conducted the evaluations using MATLAB, evaluated the results, and wrote and
revised the manuscript. Timo Hämäläinen supervised the study and revised the
manuscript.

45

This study proves that it is possible to significantly reduce IoT sensor node
energy consumption using simple edge software solutions. The compression
algorithms developed are based on an old idea about the linear behavior of
environmental magnitudes. The algorithms developed attempt to minimize the
inherent latency to be suitable for online compression and near-real-time
applications.

In Article V, a new version of the LRbTC algorithm called RT-LRbTC is
presented. The RT-LRbTC algorithm has an inherent latency of one measurement
interval (Δt) long and demonstrates similar compression efficiency as the other
linear regression-based compression algorithms. LTC has a superior CR, but due
to its unpredictable latency, it is not suitable for near-real-time applications that
require more constant and known latency.

Linear regression-based compression algorithms are also called lossy
algorithms, and their compression efficiency is related to the requirement of
accepted reconstruction error. A typical reconstruction error (error bound)
accepted for temperature data can be 0.5 °C, for example. With an error bound ε
= ±0.5 °C, RT-LRbTC obtains a CR of up to 7.3 for the Hanko Tulliniemi
temperature dataset, as shown in Article VIII. Data were measured at 10-min
measurement intervals. Thus, the number of transmission periods can be
reduced to 1/7 from a raw data situation.

Different variations of linear regression-based compression algorithms are
easy to develop, but their performance does not change much. In compressing
sensor data in online mode, it is not possible to anticipate the future values and
thus the compression algorithm’s performance with certainty. However, as
environmental magnitudes behave typically for certain geological places, the
previous datasets can be used to predict different algorithm behaviors for future
values. These behaviors are utilized and evaluated in Article IV.

RT-LRbTC has the shortest inherent latency of the evaluated and developed
compression algorithms. Its effectivity to lengthen the typical IoT sensor node
lifetime is evaluated in Articles VI and VII. In Article VI, the node lifetime is
lengthened from 491 days (no compression) to 616 days with RT-LRbTC, when

5 DISCUSSION AND CONCLUSIONS

46

the board is powered by a 2,000 mAh battery. The result will be even more
significant if the hardware platform used is more energy efficient. The Arduino
MKR WAN 1310 LoRa platform has a deep sleep power consumption of 0.467
mW, which is not very low. The measured deep sleep current consumption of
116 µA is not very low for a modern microcontroller-based platform. As shown
in Article VII, in the worst-case scenario (LoRa using SF12 for both uplink and
downlink), the node lifetime was lengthened from 343 days (no compression
implemented) to 562 days (RT-LRbTC implemented) using a 2,000 mAh battery.

The other developed variations of the LRbTC algorithm are RT-LRbTC-2Δt
and RT-WLRbTC-2Δt. RT-LRbTC-2Δt is similar to RT-LRbTC, but it has an
inherent latency of two measurement intervals. When the previous linear line
ends, it waits for one measurement interval to obtain a new measurement value
and then uses the N latest values to calculate the regression line. The idea behind
this version is that if the direction of the values changes and the line ends, then
the latest values that are already out of the previous line can predict future values
better. This same idea is taken further in the RT-WLRbTC-2Δt algorithm, which
is similar to RT-LRbTC-2Δt but utilizes a weighted linear regression instead of a
traditional linear regression. In a weighted linear regression, the last measured
value is weighted to create a greater impact on the linear regression calculation.
RT-LRbTC-2Δt and RT-WLRbTC-2Δt demonstrated some improvements in the
CR compared with the RT-LRbTC algorithm for the temperature, air pressure,
and wind speed datasets. The weighted linear regression-based variation did not
show any better performance than the traditional linear regression-based version.

Overall, this study shows that it is possible to achieve significant energy
savings with simple compression algorithms in the wireless sensor node,
together with the efficient use of sleep modes. Simple compression algorithms
based on linear regression can obtain good CRs for environmental sensor data.
There are more efficient compression algorithms available, but these methods
can be more complex or may not have predictable latency. Simple linear
regression-based compression algorithms did not show any rise in energy
consumption due to the calculations in the experiment with a sensor node.
Moreover, if the previous history datasets are available for certain geological
locations for environmental magnitudes, these datasets can be used to predict
certain compression algorithm performances to compress the same magnitudes
with the same measurement setup.

47

YHTEENVETO (SUMMARY IN FINNISH)

Tässä tutkimuksessa kehitettiin kevyitä anturidatan pakkausmenetelmiä, jotka
soveltuvat yksinkertaisiin ja alhaisen laskentatehon omaaviin langatonta Inter-
net-yhteyttä käyttäviin anturisolmuihin. Tällaiset anturisolmut ovat usein akku-
käyttöisiä, ja siten energian kulutuksen minimointi on tärkeää laitteen toimin-
taiän pidentämiseksi. Akkujen vaihtaminen tai lataaminen on merkittävä kustan-
nus, jos anturisolmujen määrä on suuri ja ne sijaitsevat laajalla alueella.

Väitöskirjassa tutustuttiin ensin tyypillisiin energiatehokkaan reunalasken-
nan menetelmiin ja niiden vaatimuksiin. Näiden selvitysten pohjalta on keskityt-
ty pääasiassa kehittämään pakkausalgoritmeja, jotka pystyvät pakkaamaan an-
turidataa reaaliajassa sitä mukaa kuin uusia mittausarvoja tulee. Tutkimuksen
tuloksena on esitelty useita versioita lineaariseen regressioon perustuvista pak-
kausalgoritmeista, joiden lähtökohtana on ollut algoritmin aiheuttaman viiveen
vakiointi ja pienentäminen.

Tutkimuksessa on lisäksi testattu datan ominaisuuksien vaikutusta kehitet-
tyjen pakkausalgoritmien pakkaustehokkuuteen. Löydettyjen vaikutusten avulla
on mahdollista ennustaa algoritmin pakkaustehokkuutta tietynlaisen datan pak-
kaamiseen. Ympäristösuureet kuten lämpötila, ilmanpaine ja tuulennopeus käyt-
täytyvät tietylle mittauspaikalle tyypillisellä tavalla vuodesta toiseen, jolloin his-
toriadataa voidaan käyttää ennustamaan algoritmin kykyä tulevan mittausdatan
tehokkaaseen pakkaamiseen.

Kehitettyjä algoritmeja on testattu pääasiassa simuloimalla, mutta myös
implementoimalla algoritmeja sulautettuun anturisolmuun. Anturisolmu hyö-
dynsi langatonta LoRaWAN-verkkoa anturidatan lähettämiseen Internetiin. An-
turisolmun energiankulutusta mitattiin sekä hyödyntäen pakkausalgoritmeja
että ilman niitä. Mittaukset osoittivat kehitettyjen pakkausalgoritmien hyödyntä-
misen vähentävän anturisolmun energiankulutusta merkittävästi ja siten akku-
käytössä pidentävän sen toimintaikää huomattavasti.

48

REFERENCES

[1] G. D. Maayan, The IoT Rundown For 2020: Stats, Risks, and Solutions
[Online], January 2020, available: https://securitytoday.com/Arti-
cles/2020/01/13/The-IoT-Rundown-for-2020.aspx?Page=1

[2] S. Woodford, Industrial Revolution 4.0 - The Future of IIoT [Online], No-
vember 2020, available: https://www.juniperresearch.com/document-li-
brary/white-papers/industrial-revolution-4-the-future-of-iiot

[3] Transforma Insights, Global IoT market will grow to 24.1 billion devices in
2030, generating $1.5 trillion annual revenue [Online], May 2020, available:
https://transformainsights.com/news/iot-market-24-billion-usd15-tril-
lion-revenue-2030

[4] IoT Analytics, State of IoT 2022: Number of connected IoT devices grow-
ing 18% to 14.4 billion globally [Online], May 2022, available: https://iot-
analytics.com/number-connected-iot-devices/

[5] Fortune Business Insight, Internet of Things (IoT) Market Size, Share &
COVID-19 Impact Analysis, By Component, By End-use Industry, and Re-
gional Forecast, 2022–2029 [Online], March 2022, available:
https://www.fortunebusinessinsights.com/industry-reports/internet-of-
things-iot-market-100307

[6] V. Raghunathan, C. Schurgers, Sung Park and M. B. Srivastava, "Energy-
aware wireless microsensor networks," in IEEE Signal Processing Magazine,
vol. 19, no. 2, pp. 40–50, March 2002, doi:
https://doi.org/10.1109/79.985679

[7] É. Morin, M. Maman, R. Guizzetti and A. Duda, "Comparison of the De-
vice Lifetime in Wireless Networks for the Internet of Things," in IEEE Ac-
cess, vol. 5, pp. 7097–7114, 2017, doi: https://doi.org/10.1109/AC-
CESS.2017.2688279

[8] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for Internet
of Things: a primer,” Digital Communications and Networks, vol. 4, issue 2,
pages 77–86, 2018, doi: https://doi.org/10.1016/j.dcan.2017.07.001

[9] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: vision and
challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
Oct. 2016, doi: https://doi.org/10.1109/JIOT.2016.2579198

[10] D. C. Harrison, D. Burmester, W. K. G. Seah, and R. Rayudu, “Busting
myths of energy models for wireless sensor networks,” in Electronics Let-
ters, vol. 52, no. 16, pp. 1412–1414, 2016, doi:
https://doi.org/10.1049/el.2016.1591

[11] J. Mocnej, M. Miškuf, P. Papcun, and I. Zolotová, “Impact of Edge Compu-
ting Paradigm on Energy Consumption in IoT,” in IFAC PapersOnLine,
51(6), pp. 162–167, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.07.147

[12] D. I. Săcăleanu, R. Popescu, I. P. Manciu and L. A. Perişoară, "Data Com-
pression in Wireless Sensor Nodes with LoRa," 2018 10th International

https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx?Page=1
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx?Page=1
https://www.juniperresearch.com/document-library/white-papers/industrial-revolution-4-the-future-of-iiot
https://www.juniperresearch.com/document-library/white-papers/industrial-revolution-4-the-future-of-iiot
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://doi.org/10.1109/79.985679
https://doi.org/10.1109/ACCESS.2017.2688279
https://doi.org/10.1109/ACCESS.2017.2688279
https://doi.org/10.1016/j.dcan.2017.07.001
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1049/el.2016.1591
https://doi.org/10.1016/j.ifacol.2018.07.147

49

Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi,
Romania, 2018, pp. 1–4, doi: https://doi.org/10.1109/ECAI.2018.8679003

[13] A. M. Alwakeel, "An Overview of Fog Computing and Edge Computing
Security and Privacy Issues," Sensors (Basel Switzerland), vol. 21, (24), pp.
8226, 2021, doi: https://doi.org/10.3390/s21248226

[14] S. Oh, Y. Seo, E. Lee and Y. Kim, "A Comprehensive Survey on Security
and Privacy for Electronic Health Data," International Journal of Environ-
mental Research and Public Health, vol. 18, (18), pp. 9668, 2021, doi:
https://doi.org/10.3390/ijerph18189668

[15] L. Bao, L. Wei, C. Jiang, W. Miao, B. Guo, W. Li, X. Cheng, R. Liu and J.
Zou, “Coverage Analysis on NB-IoT and LoRa in Power Wireless Private
Network,” Procedia computer science, vol. 131, pp. 1032–1038. 2018, doi:
https://doi.org/10.1016/j.procs.2018.04.252

[16] Z. Yang, A. Ghubaish, D. Unal and R. Jain, "Factors Affecting the Perfor-
mance of Sub-1 GHz IoT Wireless Networks," Wireless Communications and
Mobile Computing, vol. 2021, 2021, doi:
https://doi.org/10.1155/2021/8870222

[17] J. P. Queralta, T. Gia, Z. Zou, H. Tenhunen and T. Westerlund, “Compara-
tive Study of LPWAN Technologies on Unlicensed Bands for M2M Com-
munication in the IoT: Beyond LoRa and LoRaWAN,” Procedia computer
science, vol. 155, pp. 343–350. 2019, doi:
https://doi.org/10.1016/j.procs.2019.08.049

[18] B. Foubert and N. Mitton, "Long-Range Wireless Radio Technologies: A
Survey," Future Internet, vol. 12, no. 1, pp. 13, 2020, doi:
https://doi.org/10.3390/fi12010013

[19] Y. Liang, X. Wang, Z. Yu, B. Guo, X. Zheng, and S. Samtani, “Energy-effi-
cient Collaborative Sensing: Learning the Latent Correlations of Heteroge-
neous Sensors,” ACM Transactions on Sensor Networks. vol. 17, no. 3, pp. 1–
28, 2021, doi: https://doi.org/10.1145/3448416

[20] M. Szymczyk and P. Augustyniak, "Selected Energy Consumption Aspects
of Sensor Data Transmission in Distributed Multi-Microcontroller Embed-
ded Systems," Electronics (Basel), vol. 11, no. 6, pp. 848, 2022, doi:
https://doi.org/10.3390/electronics11060848.

[21] A. Subramanian and U. Govindarajan, “Analysis and mitigation of EMI in
DC–DC converters using QR interaction,” IET Circuits, Devices & Systems,
vol. 11, pp. 371–380, 2017, doi: https://doi.org/10.1049/iet-cds.2016.0288

[22] M. Mishra, S. G. Gourab and X. Gui, "Investigation of Energy Cost of Data
Compression Algorithms in WSN for IoT Applications," Sensors (Basel,
Switzerland), vol. 22, no. 19, pp. 7685, 2022, doi:
https://doi.org/10.3390/s22197685

[23] I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas and L.
Castedo, "Design, Implementation and Practical Evaluation of an IoT
Home Automation System for Fog Computing Applications Based on

https://doi.org/10.1109/ECAI.2018.8679003
https://doi.org/10.3390/s21248226
https://doi.org/10.3390/ijerph18189668
https://doi.org/10.1016/j.procs.2018.04.252
https://doi.org/10.1155/2021/8870222
https://doi.org/10.1016/j.procs.2019.08.049
https://doi.org/10.3390/fi12010013
https://doi.org/10.1145/3448416
https://doi.org/10.3390/electronics11060848
https://doi.org/10.1049/iet-cds.2016.0288
https://doi.org/10.3390/s22197685

50

MQTT and ZigBee-WiFi Sensor Nodes," Sensors (Basel, Switzerland), vol.
18, no. 8, pp. 2660, 2018, doi: https://doi.org/10.3390/s18082660

[24] N. Abosata, S. Al-Rubaye and G. Inalhan, "Lightweight Payload Encryp-
tion-Based Authentication Scheme for Advanced Metering Infrastructure
Sensor Networks," Sensors (Basel, Switzerland), vol. 22, no. 2, pp. 534, 2022.
doi: https://doi.org/10.3390/s22020534

[25] U. Jayasankar, V. Thirumal and D. Ponnurangam, “A survey on data com-
pression techniques: From the perspective of data quality, coding schemes,
data type and applications,” Journal of King Saud University. Computer and
information sciences, vol. 33, no. 2, pp. 119–140, 2021, doi:
https://doi.org/10.1016/j.jksuci.2018.05.006

[26] C. Chen, L. Zhang and R. L. K. Tiong, "A new lossy compression algo-
rithm for wireless sensor networks using Bayesian predictive cod-
ing," Wireless Networks, vol. 26, no. 8, pp. 5981–5995, 2020, doi:
https://doi.org/10.1007/s11276-020-02425-w

[27] A. Moon, J. Park and Y. J. Song, "Prediction of Compression Ratio for
Transform-based Lossy Compression in Time-series Datasets," 2022 24th
International Conference on Advanced Communication Technology (ICACT),
2022, pp. 142–146, doi:
https://doi.org/10.23919/ICACT53585.2022.9728954

[28] H. Wu, M. Suo, J. Wang, P. Mohapatra and J. Cao, "A Holistic Approach to
Reconstruct Data in Ocean Sensor Network Using Compression Sensing,"
in IEEE Access, vol. 6, pp. 280–286, 2018, doi: https://doi.org/10.1109/AC-
CESS.2017.2753240

[29] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D. Es-
trin, "Lightweight temporal compression of microclimate datasets [wire-
less sensor networks]," 29th Annual IEEE International Conference on Local
Computer Networks, Tampa, FL, USA, 2004, pp. 516–524, doi:
https://doi.org/10.1109/LCN.2004.72

[30] N. Q. V. Hung, H. Jeung and K. Aberer, “An Evaluation of Model-Based
Approaches to Sensor Data Compression,” in IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 11, pp. 2434–2447, Nov. 2013,
doi: https://doi.org/10.1109/TKDE.2012.237

[31] M. A. Rahman, M. Hamada, “A prediction-based lossless image compres-
sion procedure using dimension reduction and Huffman coding,” in Mul-
timedia Tools Applications, vol. 82, pp. 4081–4105, 2023, doi:
https://doi.org/10.1007/s11042-022-13283-3

[32] C. Chen, L. Zhang and R. L. K. Tiong, “A new lossy compression algo-
rithm for wireless sensor networks using Bayesian predictive coding,” in
Wireless Networks, vol. 26, pp. 5981–5995, 2020, doi:
https://doi.org/10.1007/s11276-020-02425-w

[33] P. Chakraborty, C. Tharini, “Integration of Prediction Based Hybrid Com-
pression in Distributed Sensor Network,” in Wireless Personal

https://doi.org/10.3390/s18082660
https://doi.org/10.3390/s22020534
https://doi.org/10.1016/j.jksuci.2018.05.006
https://doi.org/10.1007/s11276-020-02425-w
https://doi.org/10.23919/ICACT53585.2022.9728954
https://doi.org/10.1109/ACCESS.2017.2753240
https://doi.org/10.1109/ACCESS.2017.2753240
https://doi.org/10.1109/LCN.2004.72
https://doi.org/10.1109/TKDE.2012.237
https://doi.org/10.1007/s11042-022-13283-3
https://doi.org/10.1007/s11276-020-02425-w

51

Communications, vol. 122, pp. 229–241, 2022, doi:
https://doi.org/10.1007/s11277-021-08896-0

[34] Z. Yan, J. Wang, L. Sheng and Z. Yang, “An effective compression algo-
rithm for real-time transmission data using predictive coding with mixed
models of LSTM and XGBoost,” in Neurocomputing, vol. 462, pp. 247-259,
2021, doi: https://doi.org/10.1016/j.neucom.2021.07.071

[35] M. Borova, M. Prauzek, J. Konecny and K. Gaiova, “Environmental WSN
Edge Computing Concept by Wavelet Transform Data Compression in a
Sensor Node,” IFAC-PapersOnLine, vol. 52, issue 27, pp. 246–251, 2019
ISSN 2405-8963, doi: https://doi.org/10.1016/j.ifacol.2019.12.646

[36] C. Passos, C. Pedroso, A. Batista, M. Nogueira and A. Santos, "GROWN:
Local Data Compression in Real- Time To Support Energy Efficiency in
WBAN," 2020 IEEE Latin-American Conference on Communications (LATIN-
COM), Santo Domingo, Dominican Republic, 2020, pp. 1–6, doi:
https://doi.org/10.1109/LATINCOM50620.2020.9282319

[37] T. Bose, S. Bandyopadhyay, S. Kumar, A. Bhattacharyya and A. Pal, "Sig-
nal Characteristics on Sensor Data Compression in IoT -An Investiga-
tion," 2016 13th Annual IEEE International Conference on Sensing, Communi-
cation, and Networking (SECON), London, UK, 2016, pp. 1–6, doi:
https://doi.org/10.1109/SAHCN.2016.7733016

[38] A. Moon, J. Kim, J. Zhang and S. W. Son, “Evaluating fidelity of lossy com-
pression on spatiotemporal data from an IoT enabled smart farm,” Com-
puters and electronics in agriculture, vol. 154, pp. 304–313, 2018, doi:
https://doi.org/10.1016/j.compag.2018.08.045

[39] C. Sadler and M. Martonosi, “Data compression algorithms for energy-
constrained devices in delay tolerant networks,” In Proceedings of the 4th in-
ternational conference on Embedded networked sensor systems (SenSys '06),
Boulder, Colorado, USA, 2006, doi:
https://doi.org/10.1145/1182807.1182834

[40] K. L. Ketshabetswe, A. M. Zungeru, B. Mtengi, C. K. Lebekwe and S. R. S.
Prabaharan, "Data Compression Algorithms for Wireless Sensor Net-
works: A Review and Comparison," in IEEE Access, vol. 9, pp. 136872–
136891, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3116311

[41] G. Giorgi, "A Combined Approach for Real-Time Data Compression in
Wireless Body Sensor Networks," in IEEE Sensors Journal, vol. 17, no. 18,
pp. 6129–6135, 15 Sept. 15, 2017, doi:
https://doi.org/10.1109/JSEN.2017.2736249

[42] A. K. M. Al-Qurabat and A. K. Idrees, “Two level data aggregation proto-
col for prolonging lifetime of periodic sensor networks,” in Wireless Net-
works, vol. 25, no. 6, pp. 3623–3641, 2019, doi:
https://doi.org/10.1007/s11276-019-01957-0

[43] A. Makhoul, H. Harb, and D. Laiymani, “Residual energy-based adaptive
data collection approach for periodic sensor networks,” Ad Hoc Networks,

https://doi.org/10.1007/s11277-021-08896-0
https://doi.org/10.1016/j.neucom.2021.07.071
https://doi.org/10.1016/j.ifacol.2019.12.646
https://doi.org/10.1109/LATINCOM50620.2020.9282319
https://doi.org/10.1109/SAHCN.2016.7733016
https://doi.org/10.1016/j.compag.2018.08.045
https://doi.org/10.1145/1182807.1182834
https://doi.org/10.1109/ACCESS.2021.3116311
https://doi.org/10.1109/JSEN.2017.2736249
https://doi.org/10.1007/s11276-019-01957-0

52

vol. 35, pp. 149–160, 2015, ISSN 1570-8705, doi:
https://doi.org/10.1016/j.adhoc.2015.08.009.

[44] A. Mahbub, F. Haque, H. Bashar and M. Rezwanul Huq, “Improved Piece-
wise Constant Approximation Method for Compressing Data Streams”
2019 1st International Conference on Advances in Science, Engineering and Ro-
botics Technology (ICASERT), Dhaka, Bangladesh, 2019, pp. 1–6. doi:
https://doi.org/10.1109/ICASERT.2019.8934460

[45] Aggarwal, C.C. Managing and Mining Sensor Data. Springer, Boston,
2013, doi: https://doi.org/10.1007/978-1-4614-6309-2

[46] I. Lazaridis and S. Mehrotra, "Capturing sensor-generated time series with
quality guarantees," Proceedings 19th International Conference on Data Engi-
neering (Cat. No.03CH37405), Bangalore, India, 2003, pp. 429–440, doi:
https://doi.org/10.1109/ICDE.2003.1260811

[47] C. Buragohain, N. Shrivastava and S. Suri, "Space Efficient Streaming Al-
gorithms for the Maximum Error Histogram," 2007 IEEE 23rd International
Conference on Data Engineering, Istanbul, Turkey, 2007, pp. 1026–1035, doi:
https://doi.org/10.1109/ICDE.2007.368961

[48] H. Elmeleegy, A. K. Elmagarmid, E. Cecchet, W. G. Aref and W. Zwaene-
poel, “Online piece-wise linear approximation of numerical streams with
precision guarantees,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.
145–156, August 2009, doi: https://doi.org/10.14778/1687627.1687645

[49] J.-W. Lin, S.-w. Liao and F.-Y. Leu, “Sensor Data Compression Using
Bounded Error Piecewise Linear Approximation with Resolution Reduc-
tion,” Energies (Basel), vol. 12, no. 13, p. 2523, 2019, doi:
https://doi.org/10.3390/en12132523

[50] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan and W. A. Coberly,
"ECG data compression techniques-a unified approach," in IEEE Transac-
tions on Biomedical Engineering, vol. 37, no. 4, pp. 329–343, April 1990, doi:
https://doi.org/10.1109/10.52340

[51] D. Parker, M. Stojanovic, and C. Yu, “Exploiting temporal and spatial cor-
relation in wireless sensor networks,” 2013 Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, 2013, pp. 442–446, doi:
https://doi.org/10.1109/ACSSC.2013.6810315

[52] J. Azar, A. Makhoul, R. Darazi, J. Demerjian and R. Couturier, “On the
performance of resource-aware compression techniques for vital signs
data in wireless body sensor networks,” 2018 IEEE Middle East and North
Africa Communications Conference (MENACOMM), Jounieh, Lebanon, 2018,
pp. 1–6, doi: https://doi.org/10.1109/MENACOMM.2018.8371032

[53] O. Sarbishei, “Refined Lightweight Temporal Compression for Energy-Ef-
ficient Sensor Data Streaming,” 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT), Limerick, Ireland, 2019, pp. 550–553, doi:
https://doi.org/10.1109/WF-IoT.2019.8767351

[54] B. Li, O. Sarbishei, H. Nourani, and T. Glatard, “A multi-dimensional ex-
tension of the Lightweight Temporal Compression method,” 2018 IEEE

https://doi.org/10.1016/j.adhoc.2015.08.009
https://doi.org/10.1109/ICASERT.2019.8934460
https://doi.org/10.1007/978-1-4614-6309-2
https://doi.org/10.1109/ICDE.2003.1260811
https://doi.org/10.1109/ICDE.2007.368961
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.3390/en12132523
https://doi.org/10.1109/10.52340
https://doi.org/10.1109/ACSSC.2013.6810315
https://doi.org/10.1109/MENACOMM.2018.8371032
https://doi.org/10.1109/WF-IoT.2019.8767351

53

International Conference on Big Data (Big Data), Seattle, WA, USA, 2018, pp.
2918–2923, doi: https://doi.org/10.1109/BigData.2018.8621946

[55] L. Klus, R. Klus, E. S. Lohan, C. Granell, J. Talvitie, M. Valkama and J.
Nurmi, “Direct Lightweight Temporal Compression for Wearable Sensor
Data,” In IEEE Sensors Letters, vol. 5, no. 2, pp. 1–4, Feb. 2021, doi:
https://doi.org/10.1109/LSENS.2021.3051809

[56] S. Lu, Q. Xia, X. Tang, X. Zhang, Y. Lu and J. She, "A Reliable Data Com-
pression Scheme in Sensor-Cloud Systems Based on Edge Computing," in
IEEE Access, vol. 9, pp. 49007–49015, 2021, doi:
https://doi.org/10.1109/ACCESS.2021.3068753

[57] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: vision and
challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016, doi: https://doi.org/10.1109/JIOT.2016.2579198

[58] M. Satyanarayanan, “The emergence of edge computing,” in Computer,
vol. 50, no. 1, pp. 30–39, 2017, doi: https://doi.org/10.1109/MC.2017.9

[59] E. Yigitoglu, M. Mohamed, L. Liu and H. Ludwig, “Foggy: a framework
for continuous automated IoT application deployment in fog computing,”
in 2017 IEEE International Conference on AI and Mobile Services (AIMS), Hon-
olulu, HI, USA, 2017, pp. 38–45, doi:
https://doi.org/10.1109/AIMS.2017.14

[60] M. R. K. Ariffin, M. A. Asbullah, N. A. Abu and Z. Mahad, “A new effi-
cient asymmetric cryptosystem based on the integer factorization problem
of N = P^2.q,” in Malaysian Journal of Mathematical Sciences, vol. 7(S), pp.
19–37, 2012, Special Issue 3rd International Conference on Cryptography
and Computer Security 2012.

[61] S. F. S. Adnan, M. A. M. Isa and H. Hashim, “Energy analysis of the AAb
lightweight asymmetric encryption scheme on an embedded device,” in
2016 IEEE Industrial Electronics and Applications Conference (IEACon), Kota
Kinabalu, Malaysia, pp. 116–122, 2016, doi: https://doi.org/10.1109/IEA-
CON.2016.8067366

[62] B. Ying, "An energy-efficient compression algorithm for spatial data in
wireless sensor networks," 2016 18th International Conference on Advanced
Communication Technology (ICACT), PyeongChang, Korea (South), 2016,
pp. 161–164, doi: https://doi.org/10.1109/ICACT.2016.7423312

[63] S. A. Fallah, M. Arioua, A. El Oualkadi and J. El Asri, "On the performance
of piecewise linear approximation techniques in WSNs," 2018 International
Conference on Advanced Communication Technologies and Networking
(CommNet), 2018, pp. 1–6, doi:
https://doi.org/10.1109/COMMNET.2018.8360262

https://doi.org/10.1109/BigData.2018.8621946
https://doi.org/10.1109/LSENS.2021.3051809
https://doi.org/10.1109/ACCESS.2021.3068753
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/AIMS.2017.14
https://doi.org/10.1109/IEACON.2016.8067366
https://doi.org/10.1109/IEACON.2016.8067366
https://doi.org/10.1109/ICACT.2016.7423312
https://doi.org/10.1109/COMMNET.2018.8360262

ORIGINAL PAPERS

I

REQUIREMENTS FOR ENERGY EFFICIENT EDGE
COMPUTING: A SURVEY

by

Olli Väänänen & Timo Hämäläinen, 2018

Proceedings of the 18th International Conference on Next Generation
Wired/Wireless Advanced Networks and Systems NEW2AN 2018

https://doi.org/10.1007/978-3-030-01168-0_1

Reproduced with kind permission by Springer.

https://doi.org/10.1007/978-3-030-01168-0_1

Requirements for Energy Efficient Edge Computing: A

Survey

Olli Väänänen1(✉) and Timo Hämäläinen2

1 Industrial Engineering, School of Technology, JAMK University of Applied Sciences,

Jyväskylä, Finland

olli.vaananen@jamk.fi
2 Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä,

Finland

timo.t.hamalainen@jyu.fi

Abstract. Internet of Things is evolving heavily in these times. One of the ma-

jor obstacle is energy consumption in the IoT devices (sensor nodes and wire-

less gateways). The IoT devices are often battery powered wireless devices and

thus reducing the energy consumption in these devices is essential to lengthen

the lifetime of the device without battery change. It is possible to lengthen bat-

tery lifetime by efficient but lightweight sensor data analysis in close proximity

of the sensor. Performing part of the sensor data analysis in the end device can

reduce the amount of data needed to transmit wirelessly. Transmitting data

wirelessly is very energy consuming task. At the same time, the privacy and se-

curity should not be compromised. It requires effective but computationally

lightweight encryption schemes. This survey goes thru many aspects to consider

in edge and fog devices to minimize energy consumption and thus lengthen the

device and the network lifetime.

Keywords: IoT, Edge Computing, Fog Computing, sensor data compression.

1 Introduction

The Internet of Things (IoT) has been in focus on recent years. There are already

billions of devices connected to the Internet and the amount of the Internet connected

things is estimated to grow exponentially in these years [1, 2]. There are forecasts that

by 2020 there will be more than 50 billion devices connected to the Internet [3].

These connected devises and things are very heterogeneous and require very different

and application specific solutions and approaches. [1] The IoT as a concept was first

introduced in 1999 by Kevin Ashton and it was related to the devices connected to the

Internet via RFID connection. [1] The term IoT was mainly forgotten for years after

that but it was reinvented some years ago. The exact definition of the IoT is still not

described clearly, [1] but the technologies, solutions and the use of the IoT is all the

time emerging.

There are already solutions of the IoT in use but the real success of the IoT de-

pends on the standardization, which allows the compatibility, interoperability, relia-

2

bility and effectiveness of the IoT solutions. The IoT devices and things should be

able to autonomously communicate with other devices or things and connect data to

the Cloud. The IoT describes the next generation of the Internet, where physical

things are connected to the Internet and can be identified and accessed via Internet.

[1]

There are presented and used many solutions and techniques to save energy in the

IoT devices. These methods are mainly based on reducing wireless broadcasting be-

cause it is more energy consuming to broadcast data than pre-analyze it in close prox-

imity of the source (sensor). [4] The IoT sensor data need to be compressed efficiently

to reduce and minimize the cost of broadcast and storage [5]. At the same time, many

IoT devices are battery powered wireless devices. Thus, these IoT devices can be

located in places where changing the battery might be impossible or at least battery

replacement cost is one of the most critical source of cost in this kind of devices. [2]

These devices are often very limited in computing power. So often, it is the case that

it is possible to perform only very light analysis of the collected data in locally. In

addition, the IoT itself is very constrained in terms of bandwidth, energy and storage.

[5, 6]

The IoT systems and the whole IoT sector is very heterogeneous. The things vary a

lot and may move geographically and they need to interact with other things and

Cloud systems in real-time mode. When designing the IoT systems it should be taken

account scalability and interoperability of the heterogeneous devices. Design of the

IoT applications and systems require involvement of many factors like networking,

communication, business models and processes, and security. The IoT architecture

should be very adaptive to make IoT devices to interact with other devices and with

the Internet. [1]

2 Definition of Edge and Fog

The term Fog Computing was introduced by Flavio Bonomi in 2012. [7, 8] It refers to

dispersed Cloud computing which is vital in several applications where the IoT devic-

es collect data in the local network and the actions required from analyzed data take

place in the same local network. [9] In that kind of case, it is not efficient to send all

the data to centralized Cloud to be analyzed. It is not even possible to send data to the

Cloud for analysis in many latency critical applications. The term Edge Computing

means that computing happens in close proximity of data sources in the edge of the

network. In many cases the terms Edge Computing and Fog Computing are inter-

changeable. But it can be defined that Edge refers more to the device side very close

to data sources and Fog refers more infrastructure side like gateways and routers. [10]

Cloud service providers locate their data centers often in rural areas to minimize

costs. This lead to high latencies because customers are often located far from data

centers. [11] Many IoT applications require very short response times, some create a

large amount of data that can be heavy for network and some applications are in-

volved with sensitive private data. Cloud computing cannot reply all these require-

ments so the Edge Computing is one answer for these challenges. [10] Latency criti-

cal applications are for example many intelligent transportation and traffic systems,

autonomous vehicles, virtual reality (VR) and augmented reality (AR) applications.

[7] Also many safety critical applications cannot rely on the connection to the Cloud.

For example, vehicle-to-vehicle connection or data from vehicles can be used to avoid

collision, but that analysis need to be done locally or in very close proximity located

Cloudlet [7]. The Cloudlet means smaller size local datacenter. Safety critical systems

are also very common in industrial automations systems. These kind of applications

cannot tolerate possible Cloud outages and they often need low and predictable laten-

cy [7, 11]. This kind of new Fog Computing paradigm is not a replacement of the

centralized Cloud. These concepts are more complementary to each other. [9, 11] In

some applications the Cloud is not even possible to be used; this kind of situation

happens for example in the modern aircraft. The modern aircraft can generate nearly

half a terabyte of data from its sensors in one flight. [7] This amount of data cannot be

sent to the Cloud for real time analysis from the middle of the ocean. Only possibility

is to analyze the data locally and then perhaps download the raw data after flight for

further analysis that can be executed in the Cloud. Even in ground level, the current

wireless networks will be challenged with the amount of data that the huge amount of

devices will produce in the near future [10]. Most of the data produced by the IoT

devices will be analyzed locally in the Edge devices and will never be transmitted to

the Cloud. [10]

In Fig. 1 is illustrated the basic architecture of the IoT infrastructure including

Edge and Fog devices. The difference between the Edge and the Fog devices is not

always as clear as presented in Fig 1.

Fig. 1. Edge and Fog architecture in IoT. [12]

Fog and Edge devices can be efficient data servers, routers, gateways, any kind of

embedded systems or even end node like vehicles or sensors with some computational

capability. [11] The Edge devices can be small-embedded devices with very energy

efficient and limited micro controller or more capable single board Linux-computer

like Raspberry PI. In Fig 1. typically sensors are small wireless sensor tags and Smart

Edge Devices are gateways for sensors. Smart Edge Device (gateway) is connected to

4

the Internet via wireless or wired connection. Edge and Fog devices are very hetero-

geneous in nature with different hardware architectures and they run various different

Operating Systems (OS). There are also available numerous different wireless access

technologies and sensor network topologies [11]. This heterogeneous nature of Edge

and Fog devices and systems avoid developing generic and easily adaptable solutions

for Edge and Fog analytics. It is predicted that the Edge Computing could have as big

impact in society as Cloud Computing has [10].

3 Benefits of the Edge Computing

While the Cloud Computing is very efficient method for data processing having a

huge amount of computing power, [10] the Cloud Computing cannot meet and ensure

the Quality of Service (QoS) in the IoT due to unstable latency and possible outages

in the network connection and the Cloud servers. Fog or Edge Computing is an an-

swer for the problem. In the Edge Computing the majority of the computing is carried

out in close proximity of the data source. There are researches done that proof the

Edge Computing reduction in response times and in energy consumption. By doing

part of computation and analysis in the Edge reduce the needed wireless connection

bandwidth. For example, photos can be compressed in the Edge before transmitting to

the cloud. [10] Even if most of the data analysis is done in the Cloud, it is recom-

mended to do some preprocessing for sensor data in the Edge before uploading it to

the Cloud. In minimum this kind of preprocessing can be only filtering erroneous

sensor data. More advanced preprocessing can mean different compression methods

like sending only the information of the variation/alteration of the sensor values and

not absolute values. This kind of preprocessing can reduce significantly the amount of

data needed for upload data in the Cloud [10].

Security and privacy critical application can also benefit from the Edge/Fog Com-

puting approach where the original raw and sensitive data is not sent to the centralized

Cloud thru public Internet. [7] Data sent to the Cloud can be denatured data; for ex-

ample, in images the faces can be blurred. [7] Applications producing very sensitive

and private data are for example different healthcare applications.

Also home automation systems sending information to the Cloud could include

some private sensitive data. For example, information of the water and electricity

usage could easily tell if the house is vacant or not. If the computation is kept in close

proximity of this data (in the Edge), it could be decent solution to keep sensitive data

in private. [10] But if this home automation application is connected to the Internet,

this sensitive data could be reachable for inappropriate quarters. So the cybersecurity

is vital for all IoT applications whether the sensitive data is transferred to the Cloud or

not.

4 Edge and Fog Computing Challenges

Fog and Edge devices are very heterogeneous. [11] It is difficult to design easily

adaptable and generic solutions for the Edge Computing. Most applications are indi-

vidual and cannot utilize generic computational, data aggregation and data analysis

methods. There are different hardware platforms and different operational systems.

Hardware platforms can vary from very simple micro-controller based platform with

very limited memory to single board Linux-computer like Raspberry PI that is rather

powerful platform. Virtualization is one way to handle multiplatform and multi-OS

challenge.

One possibility towards generic solutions to be used in different and computation-

ally restricted platforms is a container-based approach. Container-based virtualization

can be considered as a lightweight virtualization solution. Because of lightweight

nature, the containers can run in computationally limited IoT-platform like Raspberry

PI. [13, 14] Containers could be used in the different platforms to perform same

tasks. Anyway, these platforms could not be very limited basic embedded micro-

controller based platforms, but require more computational power and generic operat-

ing system (OS) like Linux.

In [15], has been tested the ARM-based Single Board Computers with Docker con-

tainers and compared the overall efficiency in power consumption to the native exe-

cutions. The performance evaluation showed almost negligible impact with container

virtualization compared to native executions.

4.1 Methods for Reducing Energy Consumption in Wireless Sensor Networks

Several energy-efficient routing algorithms have been proposed for wireless sensor

networks (WSN) but they are mostly not suitable for the IoT. Current IoT devices are

mostly static and follow tree-based structure. [16] Dynamic routings developed for

WSN architectures are not suitable for the IoT. The IoT network is often a complex

large scale network and dynamic routing is difficult to be used effectively in this kind

of network. [17]

The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol utilizes sever-

al methods and techniques to reduce energy consumption in WSN. [18] LEACH is the

most popular routing algorithms used in WSNs [19]. There are several variations and

further developments of LEACH protocol like LEACH-C and ENHANCED LEACH

for example [16, 20]. Weight energy efficient clustering (WEEC) is an extended ver-

sion of LEACH. In WEEC the energy efficiency optimization is done by cluster head

(CH) selection procedure. Every node in the sensor network can be elected as a clus-

ter head. WEEC is a single-hop routing protocol. [19]

In [16], the authors have presented a cluster head selection for energy optimization

(CHSEO) algorithm to reduce the overall energy consumption in the IoT network.

The CHSEO algorithm is based on selecting the optimal cluster head of the sensor

nodes to reduce overall energy consumption. Hierarchical IoT sensor node framework

is composed of different node types. Sensor node is sensing, aggregating and forward-

ing data, Relay node is receiving the data from sensor nodes and transmit it to the

cluster head. Cluster head collects, aggregates and transmit the data to the base sta-

tion. Base station collects, aggregates, analyses and process the data. The CHSEO

algorithm was proved to have better performance than traditional WSN mechanism in

energy consumption and network lifetime.

6

Other example of hierarchical network architecture to reduce IoT network energy

consumption is presented in [17]. It is based on hierarchical relay node placement

with energy efficient routing mechanism. Ad Hoc On-Demand Distance Vector

(AODV) routing protocol has been used. This proposed network architecture gives

balanced energy consumption and thus better network lifetime. [17]

Modern long-range low-power IoT networks (NB-IoT, LoRa, SigFox) have star

topology, so intelligent routing algorithms are out of the question. [21] In these tech-

nologies, the ultra-low energy consumption has been achieved by using very limited

bandwidth and/or intelligent modulation.

4.2 Data Compression Methods in Edge Device: Lossy and Lossless Methods

In the IoT, huge amount of sensors are generating data and that data should be stored

and processed with minimal loss of information. Sensor data compression is not a

new discipline and several different compression algorithms are presented. [5] There

are also very energy efficient contemporary compression methods for resource con-

strained IoT-nodes presented [6]. Data aggregation is also related to the data compres-

sion. Data aggregation here means for example to combine multiple sensor data and

filter the redundant data. Data aggregation in wireless sensor network reduce the

amount of data needed to transmit to the base station and thus reduce energy con-

sumption. [18] Most of the compression methods presented for the IoT sensor data

compression are lossy compression methods. Lossy methods are more efficient in

compression compared to lossless methods. Lossy methods try to identify meaningful

data points and discard redundant data. Different compression algorithms perform

differently with different types of data sets. Also their computational complexity dif-

fers. [5]

Lossy compression methods can be divided in two groups: Time domain and

Transform domain. Time domain compression algorithms compress time series data

directly without any transformation. Transform domain compression methods trans-

form data into a different domain. Well-known transform domain methods are for

example Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). [5]

Different lossy compression algorithms are listed in Table 1.

Table 1. Lossy Compression Algorithms. [5, 6]

Name of the Algorithm Type

Box-Car Time Domain

Backward Slope Time Domain

OSIsoft PI software Time Domain

Compression extracting major extrema Time Domain

PLA, PCA Time Domain

Critical Aperture (CA) Time Domain

Fractal Resampling (FR) Time Domain

Lightweight Temporal Compression (LTC) Time Domain

Fast Fourier Transform (FFT) Transform Domain

Discrete Cosine Transform (DCT) Transform Domain

Chebyshev Transform (CH) Transform Domain

Wavelet Transform (CWT, DWT, WPT) Transform Domain

In ref. [5] the authors have selected four different lossy compression methods and

compared their applicability to different signal characteristics. Compared methods

were Critical Aperture (CA), Fractal Resampling (FR), Chebyshev Transform (CH)

and Wavelet Packet Decomposition (WPD). Data used for comparison has been di-

verse publicly available sensor datasets. Comparison has been made by comparing the

compression ratio with same Percentage Root mean square deviation (PRD). PRD

level used in comparison has been 5 %. Used datasets were different in composition.

Some were quasi-periodic (QP), some non-stationary (NS) with sudden transient

spikes and some non-stationary (NS) with periodic seasonal components. [5]

As a result, the CH was the most effective method for QP data in terms of com-

pression ratio. For NS with transient spikes data, the CA, FR and WPD were remark-

ably more effective than CH method. For NS with periodic seasonal data the WPD is

the most effective method. [5]

In [5], it is also shown that WPD requires considerably more computational time

compared to the other methods. This means a higher energy consumption. In ref. [6]

has been introduced lightweight compression algorithm for spatial data which is more

energy efficient than wavelet compression. This lightweight compression algorithm

can reduce energy consumption to half of the original consumption. This lightweight

and energy-efficient compression algorithm is based on a lightweight temporal com-

pression method named LTC [22]. LTC is tunable in accuracy and suitable for the

datasets that are largely continuous and slowly changing. LTC is widely used method

due to its good compression performance and low computational complexity. [6] LTC

also requires very little storage compared to many other compression techniques. LTC

is very effective for many environmental type data (temperature, humidity) which are

approximately linear in small enough time window. Thus, LTC leverages temporal

linearity of environmental data to compress that data. [22]

5 Wireless Technologies for Energy Efficient IoT

For years the main wireless technology for transmitting sensor data with low energy

consumption was IEEE 802.15.4 (mostly used protocol is called ZigBee). ZigBee was

designed for ultra-low energy consumption and it has been popular in WSNs. [21]

IEEE 802.11 (WiFi) has also been available for years but traditionally it has been

used for high data rates and it has had rather high energy consumption. To address

this energy consumption problem, there is available Power Saving Mode (PSM) in

IEEE 802.11. [18] This Power Saving Mode is developed for battery powered mobile

devices. IEEE 802.11 was not designed for sensor applications but with PSM it has

proofed to be potential alternative for other technologies used for WSNs. In some

cases, the IEEE 802.11 PSM can outperform the IEEE 802.15.4 in energy consump-

tion. [23] Bluetooth Low Energy (BLE) is very popular and widely used due to its

availability. It is already available in most modern smartphones and it is widely used

in wearable devices like heart rate monitors and other monitoring applications.

8

ZigBee, BLE and WiFi uses the 2.4 GHz ISM frequency band while ZigBee is avail-

able also in sub-1 GHz band (868 and 915 MHz). IEEE 802.11ah version address for

requirements of the IoT, like increased range, increased reliability and low energy

consumption. IEEE 802.11ah is operated in sub-1 GHz range. [21]

Using sub-1 GHz band increases the range and penetration thru obstacles (build-

ings, constructions). Sub-1 GHz band is also less crowded compared to popular 2.4

GHz band and thus these technologies are less vulnerable for interference. [24]

ZigBee, BLE and WiFi all have rather short range, even if sub-1 GHz band is used

(ZigBee and WiFi). As an answer for this limitation there are recent developments in

long-range technologies like SigFox and LoRa. These are so called low-power wide-

area-networks (LPWAN) [25]. SigFox is an ulta-narrow-band technology and it uses

sub-1 GHz band (868 MHz in Europe). Its range is announced to be even up to 40 km.

Direct competitor for SigFox is the LoRa. It uses the same frequency band as SigFox

but its modulation is based on Chirp Spread Spectrum (CSS). [21] CSS modulation

was developed in the 1940’s and it is very robust for interference and multipath fad-

ing. In CSS modulation the information in spread to different frequency channels and

it has noise like properties. [26]

Novel cellular based wireless technology for IoT solutions is Narrow Band-IoT

(NB-IoT) which uses narrow bandwidth for lower power consumption. [27] The

Third Generation Partnership Project (3GPP) introduced the NB-IoT in LTE Release

13. NB-IoT bandwidth for both uplink and downlink is set to 180 kHz. It is exactly

size of one physical resource block (PRB) in LTE standard. [28]

In Table 2 has been combined the main characteristics of the main WSN technolo-

gies used in the IoT. LPWAN technologies have long range and very limited data

rate. ZigBee, BLE and WiFi have much higher data rate but the range is very limited.

Table 2. Wireless technologies summary for IoT. [1, 23, 24, 26]

Technology Band Topology Announced range Data rate

802.15.4 2.4 GHz / 0.9

GHz

Meshed 50 m 0.25 Mb/s

BLE 2.4 GHz Scatternet 10 m 0.125 – 2 Mb/s

802.11 PSM 2.4 GHz Star 100 m 11 Mb/s

802.11ah 0.9 GHz Star 100m – 1 km 0.15 – 78 Mb/s

SigFox 0.9 GHz Star Up to 40-50 km 100 b/s or 1000

b/s

LoRa 0.9 GHz Star Up to 15 km (subur-

ban), 45 km (rural)

0.25 – 50 kb/s

NB-IoT 700-900 MHz Star Up to 35 km 20-65 kb/s

As both SigFox and LoRa uses unlicenced ISM band, there is no guarantee for laten-

cy. For latency critical applications, the NB-IoT is better choice while SigFox and

LoRa are suitable for low-cost projects with wide area coverage [26]. NB-IoT latency

is maximum 10 seconds according to the standard, while SigFox and Lora can have

latency of 10s of seconds. [27, 28] Lora and SigFox are both very energy efficient

technologies with very large range. BLE is also very energy efficient in its range. [21]

6 Energy Efficient IoT Protocols

The most common IoT application protocols are MQTT, CoAP, XMPP and AMQP.

MQTT (message queue telemetry transport) and CoAP (constrained application pro-

tocol) are designed especially for resource constrained devices like IoT end nodes and

gateways. [29, 30]

MQTT protocol is a publish-subscribe messaging protocol with minimal band-

width requirements. It uses TCP (transmission control protocol) for transport. It is

designed to be used in devices with restricted computational power and limited

memory. MQTT is considered as a perfect messaging protocol for M2M and IoT

applications because of its ability to function within low power, low memory and

cheap devices with low bandwidth networks. [29]

CoAP protocol is a request-response protocol but it can function as a publish-

subscribe mode too. CoAP uses UDP (user datagram protocol) for transport but it can

be used for TCP too. CoAP has a wide acceptance for constrained devices. [30]

In ref. [30] the authors have made comparison and experimental analysis between

MQTT and CoAP. As a result they have found that MQTT consumes more bandwidth

for transferring same payload than CoAP. But both protocols are efficient in terms of

energy consumption.

In ref. [31] have been evaluated the performance, energy efficiency and resource

usage of several IoT protocols (MQTT, CoAP, MQTT-SN, WebSocket and TCP). As

a result, the authors found that MQTT and CoAP protocols are largely affected by the

packet size. In generally CoAP is the most efficient in terms of energy consumption

and bandwidth usage. But MQTT protocol is more reliable.

XMPP (extensible messaging and presence protocol) and AMQP (advanced mes-

sage queuing protocol) are other popular protocols but they require more resources

and they are not so suitable for resource constrained devices.

7 Security and Privacy Issues in the Edge

Privacy and security is a very big issue and concern in the IoT systems and applica-

tions. In the IoT systems, the end nodes (IoT devices) are connected to the Internet

and thus these devices are reachable from all over the Internet. This kind of devices

can be for example IP-cameras, health monitors and wearable devices or even WiFi

connected toys. These devices can be connected by others if not protected properly.

Ownership of the collected data is other issue to take account. If the data is left on

edge device for storage and analysis, then there are no ownership problems as the

owner of the device can have all the rights for that data. [10]

Battery powered IoT devices have very limited computational power, so complex

encryption techniques require significant amount of computing and thus increase

energy consumption. Lightweight encryption algorithms for the IoT devices have

been developed.

Encryption scheme can be symmetric or asymmetric and both can be used in the

IoT devices. In symmetric encryption scheme only one key is used to encrypt and

10

decrypt the data. Both sender and receiver need to know the same key. In asymmetric

encryption scheme two distinct keys are used. One for encrypting and other for de-

crypting. The advantage here is that the encrypting key can be public key and availa-

ble to anyone. For asymmetric scheme the key need to be longer than in symmetric

scheme to be secure. Thus calculations needed are longer than in symmetric scheme.

Famous asymmetric encryption schemes are Rivest, Shamir, Adleman (RSA) scheme

and Elliptic Curve Cryptography (ECC). [32]

Several researches have been done to compare ECC and RSA schemes to each oth-

er in regarding to encryption/decryption time and key length. The ECC has proved to

be more efficient with shorten encryption/decryption time, smaller storage and in

generally more energy efficient than RSA. [33]

In ref. [34] the authors have presented lightweight asymmetric encryption scheme

called AAβ and in ref. [35] the authors have made comparison in energy consumption

between AAβ and RSA. The AAβ outperforms the RSA significantly in encryption

and decryption.

8 Conclusions

In this study, a comprehensive study of the energy efficient Edge Computing has been

carried out. There are a lot of research published from the different phases and aspects

to reduce energy consumption in wireless end devices, but only few of them encom-

pass the subject broadly. Minimizing energy consumption is one of the key aspects to

carry out in the IoT device and system development. IoT end devices are often battery

powered devices with wireless connection. Thus the computational resources are con-

strained but at the same time these devices should be able to do pre-processing and

analysis for sensor data to reduce transferred data via wireless connection.

Most methods for reducing energy consumption in the IoT devices are concentrat-

ed to reduce wireless data transfer. Wireless data transfer is often the most energy

consuming operation in the IoT device. In addition, many latency critical applications

are pushing the development towards Edge Computing.

At the same time when more and more data analysis is carried out in close prox-

imity of the sensors (in Edge and Fog); there are available several novel wireless

technologies to transfer sensor data with low energy consumption. Considering ener-

gy consumption in every phase from the sensor to the Internet, it is possible to reduce

energy consumption significantly. Many of these techniques are studied in this sur-

vey.

References

1. Li, S., Xu, L.D. & Zhao, S.: The internet of things: a survey. In: Springer Information Sys-

tems Frontiers, Volume 17, Issue 2, pp 243-259, April 2015.

2. Montori, F., Contigiani, R., Bedogni, L.: Is WiFi suitable for energy efficient IoT deploy-

ments? A performance study. In: 2017 IEEE 3rd International Forum on Research and

Technologies for Society and Industry (RTSI), Modena, 2017, pp. 1-5.

3. Jayakumar, H., Raha, A., Kim, Y., Sutar, S., Lee, W.S., Raghunathan, V.: Energy-efficient

system design for IoT devices. In: 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC), Macau, 2016, pp. 298-301.

4. Stojkoska, B.R., Nikolovski, Z.: Data compression for energy efficient IoT solutions. In:

2017 25th Telecommunication Forum (TELFOR), Belgrade, 2017, pp. 1-4.

5. Bose, T., Bandyopadhyay, S., Kumar, S., Bhattacharyya, A., Pal, A.: Signal Characteristics

on Sensor Data Compression in IoT - An Investigation. In: 2016 IEEE International Con-

ference on Sensing, Communication and Networking (SECON Workshops), London,

2016, pp. 1-6.

6. Ying, B.: An Energy-Efficient Compression Algorithm for Spatial Data in Wireless Sensor

Networks. ICACT 2016.

7. Satyanarayanan, M.: The Emergence of Edge Computing. Computer, vol. 50, no. 1, pp.

30-39, Jan. 2017.

8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of

things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Com-

puting-MCC ’12, Helsinki, Finland, 17 August 2012; pp. 13–15.

9. Jalali, F., Khodadustan, S., Gray, C., Hinton, K., Suits, F.: Greening IoT with Fog: A Sur-

vey. In: 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, HI,

2017, pp. 25-31.

10. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge Computing: Vision and Challenges. IEEE

Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016.

11. Venkat Narayana Rao, T., Amer Khan, M.D., Maschendra, M., Kiran Kumar, M.: A Para-

digm Shift from Cloud to Fog Computing. IJCSET (www.ijcset.net) Vol 5, Issue 11, pp

385-389. November 2015.

12. Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy: A Framework for Continuous

Automated IoT Application Deployment in Fog Computing. In: 2017 IEEE International

Conference on AI & Mobile Services (AIMS), Honolulu, HI, 2017, pp. 38-45.

13. Morabito, R.: A performance evaluation of container technologies on Internet of Things

devices. In: 2016 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 999-1000.

14. Pahl, C., Helmer, S., Miori, L., Sanin, J., Lee, B.: A Container-Based Edge Cloud PaaS

Architecture Based on Raspberry Pi Clusters. In: 2016 IEEE 4th International Conference

on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, 2016, pp. 117-

124.

15. Morabito, R.: Virtualization on Internet of Things Edge Devices With Container Technol-

ogies: A Performance Evaluation. IEEE Access, vol. 5, pp. 8835-8850, 2017.

16. Krishna, P.V., Obaidat, M.S., Nagaraju, D., Saritha, V.: CHSEO: An Energy Optimization

Approach for Communication in the Internet of Things. In: GLOBECOM 2017 - 2017

IEEE Global Communications Conference, Singapore, 2017, pp. 1-6.

17. Cho, Y., Kim, M., Woo, S.: Energy efficient IoT based on wireless sensor networks. In:

2018 20th International Conference on Advanced Communication Technology (ICACT),

Chuncheon-si Gangwon-do, Korea (South), 2018, pp. 294-299.

18. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks, Theory and

Practise. Wiley (2010).

19. Bhushan, B., Sahoo, G.: A comprehensive survey of secure and energy efficient routing

protocols and data collection approaches in wireless sensor networks. In: 2017 Internation-

al Conference on Signal Processing and Communication (ICSPC), Coimbatore, 2017, pp.

294-299.

12

20. Kumar, S., Verma, U.K., Sinha, D.: Performance analysis of LEACH and ENHANCED

LEACH in WSN. In: 2016 International Conference on Circuit, Power and Computing

Technologies (ICCPCT), Nagercoil, 2016, pp. 1-7.

21. Morin, É., Maman, M., Guizzetti R., Duda, A.: Comparison of the Device Lifetime in

Wireless Networks for the Internet of Things. IEEE Access, vol. 5, pp. 7097-7114, 2017.

22. Schoellhammer, T., Osterwein, E., Greenstein, B., et al.: Lightweight temporal compres-

sion of microclimate datasets. In: Proceedings of the 29th Annual IEEE International Con-

ference on Local Computer Networks IEEE Computer Society, 2004, pp. 516-524.

23. Tozlu, S.: Feasibility of Wi-Fi enabled sensors for Internet of Things. In: 2011 7th Interna-

tional Wireless Communications and Mobile Computing Conference, Istanbul, 2011, pp.

291-296.

24. de Carvalho Silva, J., Rodrigues, J.J.P.C., Alberti, A.M., Solic, P., Aquino, A.L.L.: Lo-

RaWAN — A low power WAN protocol for Internet of Things: A review and opportuni-

ties. In: 2017 2nd International Multidisciplinary Conference on Computer and Energy

Science (SpliTech), Split, 2017, pp. 1-6.

25. Ayele, E.D., Hakkenberg, C., Meijers, J.P., Zhang, K., Meratnia, N., Havinga, P.J.M.: Per-

formance analysis of LoRa radio for an indoor IoT applications. In: 2017 International

Conference on Internet of Things for the Global Community (IoTGC), Funchal, 2017, pp.

1-8.

26. Poursafar, N., Alahi, M.E.E., Mukhopadhyay, S.: Long-range wireless technologies for

IoT applications: A review. In: 2017 Eleventh International Conference on Sensing Tech-

nology (ICST), Sydney, NSW, 2017, pp. 1-6.

27. Wang, H., Fapojuwo, A.O.: A Survey of Enabling Technologies of Low Power and Long

Range Machine-to-Machine Communications. IEEE Communications Surveys & Tutori-

als, vol. 19, no. 4, pp. 2621-2639, Fourthquarter 2017.

28. Xu, J., Yao, J., Wang, L., Ming, Z., Wu, K., Chen, L.: Narrowband Internet of Things:

Evolutions, Technologies and Open Issues. IEEE Internet of Things Journal, 2017.

29. Yassein, M.B., Shatnawi, M.Q., Aljwarneh, S., Al-Hatmi, R.: Internet of Things: Survey

and open issues of MQTT protocol. In: 2017 International Conference on Engineering &

MIS (ICEMIS), Monastir, 2017, pp. 1-6.

30. Bandyopadhyay, S., Bhattacharyya, A.: Lightweight Internet protocols for web enablement

of sensors using constrained gateway devices. In: 2013 International Conference on Com-

puting, Networking and Communications (ICNC), San Diego, CA, 2013, pp. 334-340.

31. Mun, D.H., Dinh, M.L., Kwon, Y.W.: An Assessment of Internet of Things Protocols for

Resource-Constrained Applications. In: 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC), Atlanta, GA, 2016, pp. 555-560.

32. Adnan, S.F.S., Isa, M.A.M., Hashim, H.: Analysis of asymmetric encryption scheme, AAβ

Performance on Arm Microcontroller. In: 2017 IEEE Symposium on Computer Applica-

tions & Industrial Electronics (ISCAIE), Langkawi, 2017, pp. 146-151.

33. Diro, A.A., Chilamkurti, N., Nam, Y.: Analysis of Lightweight Encryption Scheme for

Fog-to-Things Communication. IEEE Access.

34. Ariffin, M.R.K., Asbullah, M.A., Abu, N.A., Mahad, Z.: A New Efficient Asymmetric

Cryptosystem Based on the Integer Factorization Problem of N=P^2 .q. In: Malaysian J.

Math. Sci. 7(S) 19-37 Spec. Issue 3rd Int. Conf. Cryptol. Comput. Secur. 2012, vol. 7, pp.

1– 6, 2012.

35. Adnan, S.F.S., Isa, M.A.M., Hashim, H.: Energy analysis of the AAβ lightweight asym-

metric encryption scheme on an embedded device. In: 2016 IEEE Industrial Electronics

and Applications Conference (IEACon), Kota Kinabalu, 2016, pp. 116-122.

II

PREDICTIVE PUMPING BASED ON SENSOR DATA AND
WEATHER FORECAST

by

Olli Väänänen, Jari Hautamäki & Timo Hämäläinen, 2019

Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), pp. 1–5.

https://doi.org/10.1109/SAS.2019.8706018

Reproduced with kind permission by IEEE.

https://doi.org/10.1109/SAS.2019.8706018

Predictive pumping based on sensor data and
weather forecast

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

olli.vaananen@jamk.fi

Jari Hautamäki
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

jari.hautamaki@jamk.fi

Timo Hämäläinen
Department of Mathematical

Information Technology
University of Jyväskylä

Jyväskylä, Finland
timo.t.hamalainen@jyu.fi

Abstract—In energy production, peat extraction has a
significant role in Finland. However, protection of nature has
become more and more important globally. How do we solve this
conflict of interests respecting both views? In peat production,
one important phase is to drain peat bog so that peat production
becomes available. This means that we have control over how
we can lead water away from peat bog to nature without water
contamination with solid and other harmful substances. In this
paper we describe a novel method how fouling of water bodies
from peat bog can be controlled more efficiently by using
weather forecast to predict rainfall and thus, minimize the
effluents to nature.

Keywords—Internet of Things, open data, predictive control,
rain prediction

I. INTRODUCTION
Today, nature protection has become a more and more

important issue. All technology solutions to help avoid nature
resource overconsumption are welcome.

In Finnish peatlands the peat production area is
approximately 68,000 hectares. In 2016, there were 45,000
hectares of energy peat production and 5,000 hectares of
peatland in the production of environmental peat. During the
2000s, the production of energy peat has averaged about 400
megawatt hours per hectare. The total output of energy peat
has varied from 8 terawatt hours to 35 terawatt hours in the
2000s [1].

Peat production is seasonal. The peat season is in normal
years from mid-May to early September. The average summer
lasts 40-50 days, when production is possible. The production
is also weather dependent, and the yield per hectare varies
both at the annual and regional levels [1].

Views on the harmfulness of peat production on
watercourses are based on obsolete data and beliefs about peat
production. These beliefs are bolstered by the fact that peat
production has been accused of water contamination [1].

The central part in avoiding fouling of water bodies is
predictable control of runoff water. An important role in this
process is the ability to filter in significant quantities solid and
other harmful substances before water accesses water bodies.
The present method in Finland is based on pumping of the
water from drainage reservoirs (pump pool) to filtering field
by measuring the water height in reservoirs.

 In this research paper, we introduce a novel method to
powerfully filter solid and other substances from water. Our
solution is based on using IoT technology with weather
forecast and rainfall measurement locally in peat bog. It
stabilizes the flow of water from the drainage reservoirs

significantly and thus notably reduces the load on the peat
production area.

II. COMBINING SENSOR DATA AND WEATHER FORECASTS
IN IOT SYSTEM

There are some experiments of using weather forecasts for
prediction in the IoT systems, for example in different
agricultural systems and applications. Reference [2] proposes
a smart water dripping system for the farmers to irrigate the
farms efficiently. It is mainly based on local sensors like soil
temperature, moisture and pH. The systems also collect the
weather forecast information from websites and use its
information to decide if the watering is needed. Due to
possible forecast inaccuracy, the system gives for the operator
possibility to manually override the system suggestion [2].

A farming automation system for plants watering which
uses the weather prediction based on fuzzy logic algorithm has
been introduced in [3]. The system is based on sensor data and
forecast from the weather service provider. The system uses
fuzzy logic algorithm to calculate if the plant should be
watered. Sensor data includes the soil moisture data and rain
sensor data. Weather prediction data is collected from two
different weather service providers (WSP Open Weather and
Weather Underground) [3].

Rainfall forecasts have been used in cyber physical
systems for predicting and preventing flood hazards. Yang et
al. [4] have used an ensemble numerical prediction system to
get more reliable rainfall forecast. The ensemble numerical
system used is based on 20 ensemble units. These ensemble
units are various numerical weather prediction models with
different configurations. The system is based on worldwide
observation data of weather parameters. This data is obtained
from various sources like satellites, atmospheric sounding
devices, buoys, aviation routine weather reports, ships, and
other sources. The ensemble system provides a 72-hour
rainfall forecast every six hours with 5 km spatial resolution.
Then the statistical artificial neural network method has been
used to combine the 20 ensemble rainfall forecasts to
improved 24-hour forecast. To further improve the short-term
rainfall forecasts the real-time radar data has been included for
the model [4].

Weather forecasts together with local weather data have
been used to forecast crop frost. If the frost occurs in the
growth season, the economic losses can be very significant for
the farmers. The weather forecast accuracy to predict actual
temperatures in the field has been researched by using several
regression techniques. According to the different regression
techniques used, it is not possible to predict the actual
temperature in the field from the weather forecast with the

accuracy needed for predicting the frost. More advanced and
complex techniques have been proposed to be tested like
genetic algorithm and neural network [5].

Weather forecasts have been also used for predicting the
heat load for family houses [6][7]. Heating systems based on
hot water circulation have the disadvantage and challenge of
the long response time. It cannot react quickly enough for the
outside temperature changes. By using the weather forecast as
one input, it is possible to react proactively to weather changes
and it can improve the comfort and reduce energy
consumption.

Weather and especially rainfall forecasting is a
challenging task locally. There is a lot of research done in that
field. There are several methods to weather forecast. One of
the most used methodologies is complex time series [8][9].
One of best-known methods for time series analysis are
Exponential Smoothing [10] and Autoregressive Integrated
Moving Average (ARIMA) [11].

Prediction of rainfall is a rather complex physical
phenomenon. For this reason, methods such as machine
learning are used today. Examples of such methods are among
others Artificial Neural Network (𝐴𝐴𝐴𝐴𝐴𝐴) [12], k-closest
neighbor (𝑘𝑘𝑘𝑘𝑘𝑘) regression [13], Radial Basis Support Vector
Regression (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) both separately and in combination as a
hybrid model [14].

III. SMART PUMPING SYSTEM
Water treatment in the peat production area is a very

important and challenging task. For production, the peat needs
to be dry. Water is flowing via ditches to the separated
reservoirs. From the reservoirs, the water is pumped to the
filtering field where the vegetation and soil is filtering the
water. Water is filtered through the field that restrains the
solids and nutrients before the water is flowing to the
watercourses [15].

The filtration through the filtering field is more effective
if the pumping and water flow through the field is as constant
as possible. In traditional pumping systems, the pumping
starts when the water level is high in pump pool and stops
when the water level is rather low. The pumping takes place
in constant speed. Therefore, the pumping and water flow is
not smooth but occurs more in bursts.

With the frequency converter, it is possible to even out the
pumping by slowing down the pumping speed as the water
level in the pool is lowering. This is a very simple and
effective method to even out the water flow through the field.
It is also possible to program to the frequency converter a
ramp-up time for soft starting and to lower the starting burst
in water flow.

The next step to even out the pumping even more is to use
the predictive pumping. When the weather forecast is
predicting rain or if the rain has already started, but the water
is still flowing to the pool, it could be possible to start pumping
while the level in the pool has not yet reached the pumping
level. This way the pool could buffer more water and the
pumping of the raining water would take more time and the
filtering field should filter the water more effectively.

There is a delay in water flow from the peat production
area to the reservoirs. The field from which the raining water
is flowed via ditches to the pool can be several tens of

hectares. The flowing speed depends on, for example how dry
the soil is. Dry soil can absorb more water thus lowering and
slowing the water flowing to the pool.

This paper presents the implementation of the smart
pumping control and the algorithm for the predictive
pumping. The predictive pumping is based on the weather
forecast for the area and the local weather station data together
with the actual water level in the pump pool.

The construction of the IoT pump control can be seen in
Fig 1. The decision is made in the ThingsBoard.io Open
Source IoT platform, which is located in the cloud server. The
data gathered to the IoT platform are the weather forecast
(rainfall prediction from open data) data, local weather station
data and the actual water level information.

The water level in the pump pool is measured with the
hydrostatic level transmitter (water level transmitter). Its
output signal is 2-wire 4-20 mA traditional current loop,
which is widely used in automation technology due to its
immunity for electromagnetic disturbance. The current loop
level is converted to the digital I2C-bus with separate
converter and connected to the Raspberry PI Linux computer.
The Raspberry PI sends the water level data to the IoT
platform (cloud) via 3G/4G cellular network.

The other data inputs for the IoT platform are local
weather forecast (from Finnish Meteorological Institute) and
data from local weather station located in close proximity to
the pump station and peat production area.

The Finnish Meteorological Institute (FMI) offers several
different data sets as Open Data. FMI offers weather forecast
for 17,000 places in Finland. Weather forecast in open data is
updated four times a day, thus every 6 hours. The rainfall
forecast for the closest offered place from the peat production
area was the main focus in this case [16].

The local weather station is located in close proximity of
the pump station. Weather station sends the data to the cloud
server (weatherlink) via cellular network and the data is
obtained from there via interface to the IoT platform. The
main factor gained from the local weather data in the
predictive algorithm is the rain during the last hour. Water
rained during last hour is still partly flowing to the reservoir,
thus it does not immediately raise the water level in the
reservoir.

The analytics from the obtained data is carried out on the
IoT platform. According to the analytics, it creates the
information for the current signal needed for guiding and
controlling the frequency converter. This information is sent
to the Raspberry PI via wireless 3G/4G connection and the
Raspberry PI creates a new control signal with I2C/current (4-
20 mA) converter. This current loop is connected to the
frequency converter.

The flow meters are located after the filtering field. The
flow meter data can be used to evaluate the smart pumping
effectiveness to even out the water flow after the filtering
field. It cannot be used for real time feedback to the pumping
because there is a delay when the effect of pumping can be
seen in water flow.

In a pilot case, the water level in the measuring well can
vary from 0 meters to 3 meters. The frequency converter is
programmed to keep the water level in 1.8 meters and the

Fig. 1. The construction of the IoT pump control.

range is approximately between 1.8 m to 2.2 m. Thus, the
pumping starts when the water level has reached the 2.2
meters. The pumping starts at nominal speed and it slows
down stepless until the water level reaches 1.8 meters level.

The predictive pumping algorithm can start the pumping
before the water level reaches the 2.2 meters level. Moreover,
with predictive pumping the water level can be pumped down
to 1.5 meters level to yield to raining water.

IV. PREDICTIVE PUMPING ALGORITHM BASED ON SENSOR
DATA AND WEATHER FORECAST

The algorithm used in the IoT platform is creating the
information for control signal needed. The first version of the
pumping algorithm is rather simple but it will be developed
further in the future.

The control algorithm inputs are:

• next hour rainfall forecast from FMI open data R1
(mm).

• last hour accumulated rainfall from the local weather
station R2 (mm).

• actual water level in pump station L1 (mA)

The control signal L2 (mA) for the frequency converter is:

𝐿𝐿2(𝐿𝐿1,𝑋𝑋1,𝑋𝑋2) = � 𝐿𝐿1, when 𝐿𝐿1 < 𝑦𝑦
𝐿𝐿1 + 𝑋𝑋1 + 𝑋𝑋2, when 𝐿𝐿1 ≥ 𝑦𝑦 (1)

𝐿𝐿1, 𝐿𝐿2,𝑦𝑦 ∈ [4,20]

𝑋𝑋1,𝑋𝑋2 ∈ [0,16]

The X1 (mA) is the effect of the rainfall forecast on the
control signal:

𝑋𝑋1(𝑅𝑅1) = �
0, when 𝑅𝑅1 < 𝑏𝑏

𝑎𝑎𝑅𝑅1, when 𝑏𝑏 ≤ 𝑅𝑅1 ≤ 𝑐𝑐
𝑑𝑑, when 𝑅𝑅1 > 𝑐𝑐

 (2)

𝑅𝑅1, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ [0,∞[

𝑑𝑑 ∈ [𝑎𝑎𝑅𝑅1, 16]

Where a is just a parameter to scale the control (slope) to
the suitable level. The b is the minimum predicted amount of
rain to take account (for example 0.5 mm/h), c is the limit for
the predicted rain to be used for growing the X1 (thus the rain
prediction higher than c is not raising the X1 anymore), d is the
maximum for X1 (for example 14 mA). Maximum value for d
is 16 mA but in real situation, it needs to be much lower.

The X2 (mA) is the effect of the last hour accumulated rain
measured in local weather station:

𝑋𝑋2(𝑅𝑅2) = �
0, when 𝑅𝑅2 < 𝑓𝑓

𝑒𝑒𝑅𝑅2, when 𝑓𝑓 ≤ 𝑅𝑅2 ≤ 𝑔𝑔
ℎ, when 𝑅𝑅2 > 𝑔𝑔

 (3)

𝑅𝑅2, 𝑒𝑒, 𝑓𝑓,𝑔𝑔 ∈ [0,∞[

ℎ ∈ [𝑒𝑒𝑅𝑅2, 16]

Where e is the parameter to scale the control level. The f
is the minimum accumulated last hour rain to take into account
(for example 0.5 mm/h), g is the amount of accumulated rain
during last hour to be used for increasing the X2. The h is the
maximum for X2.

The parameters used in this pilot case were y = 12 mA, a
= 2, b = 0.5 mm/h, c = 7 mm/h, d = 14 mA, e = 2, f = 0.5 mm/h,
g = 7 mm/h, h = 14 mA.

Thus the algorithm for weather (rainfall) prediction effect
X1 was:

𝑋𝑋1(𝑅𝑅1) = �
0, when 𝑅𝑅1 < 0.5

2𝑅𝑅1, when 0.5 ≤ 𝑅𝑅1 ≤ 7
14, when 𝑅𝑅1 > 7

 (4)

The effect of the local weather data:

𝑋𝑋2(𝑅𝑅2) = �
0, when 𝑅𝑅2 < 0.5

2𝑅𝑅2, when 0.5 ≤ 𝑅𝑅2 ≤ 7
14, when 𝑅𝑅2 > 7

 (5)

Lastly, the final control signal for the frequency converter:

𝐿𝐿2(𝐿𝐿1,𝑋𝑋1,𝑋𝑋2) = � 𝐿𝐿1, when 𝐿𝐿1 < 12
𝐿𝐿1 + 𝑋𝑋1 + 𝑋𝑋2, when 𝐿𝐿1 ≥ 12 (6)

The control chain in the IoT platform is presented in Fig
2. The Raspberry PI sends the water level transmitter data to
the IoT platform. In the IoT platform, the effects of rainfall
forecast and the last hour accumulated rain are calculated and
added to the water level data if the water level is over a certain
threshold level. This data is sent to the Raspberry PI in the
field. If the water level is not over the threshold, the water
level data is returned back to the Raspberry PI unchanged.

V. RESULTS
The predictive pumping system has been in use during

autumn 2018 for few months. Due to exceptional rain
conditions during that period, reliably results and conclusions
cannot be drawn yet. In addition, the predictive algorithm
parameters were changed few times during the period.
Originally, the parameters were set too conservatively and the
predictive control did not activate easily.

Data from local weather station and weather forecast for
that location have been collected during autumn 2018. The
rainfall forecast and actual rainfall from local weather station
is presented in Fig 3. from 9 October 2018 to 13 November
2018 in hour on an hour basis. Measuring period is rather short
but at least during that observation period the correlation

Fig. 2. Control chain in IoT platform.

between forecast and actual level is rather small. If the weather
forecast is predicting rain and it actually does not start to rain,
the pumping can start without the real need. Anyway, this is
not a big problem; however, it gives rise to water flow after
the filtering field. As a disadvantage, this system starts
pumping with nominal speed. In a predictive mode, it could
be better to start pumping with modest speed. This way the
water flow would be more even and the unnecessary pumping
(due to false rainfall prediction) would not cause as large burst
in water flow after the filtering field. This is one of possible
tasks in further development.

VI. CONCLUSIONS AND FUTURE WORK
By using short-term (one hour) rainfall forecast we get

quite good accuracy to the pump control. That way the rainfall
prediction and pump control are simple. Better result to the
control will be achieved by predicting rainfall using local
weather information. In addition, one possibility is to use the
rainfall forecast for the next few hours, not just the next hour.
The forecast for following hours could have a smaller effect
on the algorithm due to bigger inaccuracy.

The next step in the research will be to add the weather
forecast, local weather station information and the peat bog’s
current capability of water absorption into the pump control
algorithm. Water absorption depends on long-term rainfall
and season. With these changes to algorithm, it is possible to
get more even water discharge from the peat bog elsewhere to
the nature. By adding water flow measurement information
from the filtering field with water pumping information we get
feedback from the algorithm by regression analysis.

Fig. 3. Actual rainfall versus rain forecast from hour to hour.

In this system, all the intelligence and calculations are
done in the cloud server (IoT platform). This kind of system
requires a reliable wireless internet connection from the field
to the cloud and back. The water level data is constantly sent
to the IoT platform and the IoT platform sends the new control
data at the same rate back to the Raspberry PI. In rural areas,
the internet connection is not always reliable enough. The
algorithm used is not very complex; thus, the calculations
could be done locally in the Raspberry PI. This kind of
approach is called edge computing. The weather forecast from
open data used is updated every six hours so in edge
computing approach there is no need for a constant internet
connection. The amount of data in weather forecast is also
rather small. It could be possible to download this amount of
data to the edge device with a rather slow internet connection.
Edge computing could also help significantly in possible
connection shortages. Local weather station data could be
connected directly to the control device without available
internet connection.

REFERENCES
[1] http://turveinfo.fi/turve/turvetuotanto/turpeen-tuotanto/, accessed 15th

November 2018
[2] P. Padalalu, S. Mahajan, K. Dabir, S. Mitkar and D. Javale, "Smart

water dripping system for agriculture/farming," 2017 2nd International
Conference for Convergence in Technology (I2CT), Mumbai, 2017,
pp. 659-662. doi: 10.1109/I2CT.2017.8226212

[3] A. P. Kurniawan, A. N. Jati and F. Azmi, "Weather prediction based
on fuzzy logic algorithm for supporting general farming automation
system," 2017 5th International Conference on Instrumentation,
Control, and Automation (ICA), Yogyakarta, 2017, pp. 152-157. doi:
10.1109/ICA.2017.8068431

[4] TH. Yang, SC. Yang, HM. Kao, MC. Wu, HM. Hsu, “Cyber-physical-
system-based smart water system to prevent flood hazards,” in Smart
Water 3: 1, 2018. https://doi.org/10.1186/s40713-018-0008-3

[5] M. Á. Guillén-Navarro, F. Pereñíguez-García and R. Martínez-España,
"IoT-based System to Forecast Crop Frost," 2017 International
Conference on Intelligent Environments (IE), Seoul, 2017, pp. 28-35.
doi: 10.1109/IE.2017.38

[6] P. Bacher, H. Madsen and H. A. Nielsen, "Online short-term heat load
forecasting for single family houses," IECON 2013 - 39th Annual
Conference of the IEEE Industrial Electronics Society, Vienna, 2013,
pp. 5741-5746. doi: 10.1109/IECON.2013.6700075

[7] M. K. Agesen et al., "Toolchain for user-centered intelligent floor
heating control," IECON 2016 - 42nd Annual Conference of the IEEE
Industrial Electronics Society, Florence, 2016, pp. 5296-5301. doi:
10.1109/IECON.2016.7794040

[8] N. Diodato, “Using Historical Precipitation Patterns to Forecast Daily
Extremes of Rainfall for the Coming Decades in Naples (Italy)”
Geosciences, 8(8), 2018, p. 293.

[9] C.L. Wu, K.W. Chau, and C. Fan, “Prediction of rainfall time series
using modular artificial neural networks coupled with data
preprocessing techniques,” J Hydrol, vol. 389, no. 1-2, pp. 146-167,
2010.

[10] V. Prema, "Time Series Decomposition Model for Accurate Wind
Speed Forecast." Renewables: Wind, Water, and Solar 2, no. 1 (2015):
1-11.

[11] S. Zakaria, "ARIMA Models for Weekly Rainfall in the Semi-arid
Sinjar District At Iraq." Journal of Earth Sciences and Geotechnical
Engineering 2, no. 3 (2012).

[12] K. Abhishek, A. Kumar, R. Ranjan, and S. Kumar, “Rainfall Prediction
Model using Artificial Neural Networks,” IEEEControl and Graduate
Research Colloquim, 2012.

[13] M. Cristian, “Average monthly rainfall forecast in Romania by using
K-nearest neighbors regression,” Analele Universităţii Constantin
Brâncuşi din Târgu Jiu : Seria Economie, 1(4), pp. 5-12.

[14] S. M. Sumi, M. F. Zaman, H. Hirose, “Rainfall forecasting method
using machine learning models and its application to Fukuoka city
case,” International Journal of Applied Mathematics and Computer
Science, vol. . 4, pp. 841-854, 2012

[15] E. Alakangas, P. Hölttä, M. Juntunen, T. Vesisenaho, Fuel Peat
Production Technology : Training material,., Publications of JAMK
University of Applied Sciences 140, 2012.
http://www.theseus.fi/handle/10024/126627

[16] Finnish Meteorological Institute’s open data –service
https://en.ilmatieteenlaitos.fi/open-data

III

COMPRESSION METHODS FOR MICROCLIMATE DATA
BASED ON LINEAR APPROXIMATION OF SENSOR DATA

by

Olli Väänänen & Timo Hämäläinen, 2019

Proceedings of the 19th International Conference on Next Generation
Wired/Wireless Advanced Networks and Systems NEW2AN 2019

https://doi.org/10.1007/978-3-030-30859-9_3

Reproduced with kind permission by Springer.

https://doi.org/10.1007/978-3-030-30859-9_3

Compression Methods for Microclimate Data Based on
Linear Approximation of Sensor Data

Olli Väänänen1[0000-0002-7211-7668] and Timo Hämäläinen2[0000-0002-4168-9102]

1 Industrial Engineering, School of Technology, JAMK University of Applied Sciences,
Jyväskylä, Finland

olli.vaananen@jamk.fi
2 Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

timo.t.hamalainen@jyu.fi

Abstract. Edge computing is currently one of the main research topics in the
field of Internet of Things. Edge computing requires lightweight and computa-
tionally simple algorithms for sensor data analytics. Sensing edge devices are
often battery powered and have a wireless connection. In designing edge devic-
es the energy efficiency needs to be taken into account. Pre-processing the data
locally in the edge device reduces the amount of data and thus decreases the en-
ergy consumption of wireless data transmission. Sensor data compression algo-
rithms presented in this paper are mainly based on data linearity. Microclimate
data is near linear in short time window and thus simple linear approximation
based compression algorithms can achieve rather good compression ratios with
low computational complexity. Using these kind of simple compression algo-
rithms can significantly improve the battery and thus the edge device lifetime.
In this paper linear approximation based compression algorithms are tested to
compress microclimate data.

Keywords: Edge Computing, Internet of Things, Compression algorithm.

1 Introduction

Edge computing has been one of the most significant research topics in the field of
Internet of Things during these years. The edge computing means that part of the data
analysis is carried out in so-called edge devices. The edge devices are devices located
on the edge of the network. Wireless sensor nodes are one example of typical edge
devices. The edge devices are often computationally constrained and light devices [1].

Edge computing is not going to substitute the cloud computing but it is more like a
supplement concept in the IoT field. Most of the data analysis has been carried out in
the cloud and this will be probably the case in the future as well. As the amount of the
data from the sensing devices is increasing all the time and these sensing devices are
often battery or energy harvesting powered, the energy efficiency of those so called
edge devices has become very important. It is known that transmitting data wirelessly
from the edge device is the most energy-consuming task in these devices. It is more
energy efficient to conduct some light data analysis or pre-processing locally and thus

reduce the amount of data needed to send to the cloud. One possible pre-processing
task for the sensor data is to filter clearly erroneous data and to compress the sensor
data. The edge computing approach can also help to solve privacy and security issues
concerning IoT data and offer minimized latency and improve the quality of service
(QoS) [2].

There are different sensor data compression methods available. The suitability and
efficiency of different methods depend on the data characteristics. Different methods
differ in computational complexity, which is an important aspect in edge computing.
This paper presents basic and light compression algorithms based on data linearity.
Many environmental values are near linear in small time window. These compression
algorithms’ compression efficiency is tested for microclimate datasets. Datasets are
temperature, air pressure and wind speed measurements from the Finnish Meteorolog-
ical Institute’s open data service.

The microclimate data is often nearly linear in short time window. For example,
temperature normally changes slowly and if the measurement sampling rate is fast
enough, the consecutive measurements cannot deviate much from each other [3]. Air
pressure normally also changes slowly. Only approaching low pressure such as a
thunderstorm, the air pressure can drop quickly [4]. Wind speed is slightly different
because it can stay zero rather long periods. The wind speed also varies quite quickly
and it is also quite abrupt in nature [3]. In this paper, the wind speed dataset is aver-
aged data and thus represents more linear type data.

The microclimate data is very important for example in different agricultural appli-
cations. Agricultural applications for example for crop protection and to maximize
crop production [5, 6] have been presented; however, microclimate measurements are
important also in urban environment [7].

2 Lightweight Compression Methods for Sensor Data

In constrained edge devices, it is crucial to optimize resource usage. This means to
optimize computational capacity, energy consumption and bandwidth usage [8].
These devices are often connected to the internet via wireless connection. Wireless
transmitting is known to be the most energy-consuming task in these devices, thus it
is in many cases more energy efficient to carry out data pre-processing and light-
weight data analytics locally and thus reduce the amount of data needed to send via
wireless link. A very simple method for reducing the amount of data is to compress
the data. The other method is simply to reduce the sampling frequency of the sensor
[3]. The drawback here is that information is lost between sampling points. Sampling
a sensor is quite low energy operation compared to the energy consumption in radio
transmission [3]. By using an effective and low computational complexity compres-
sion algorithm it is possible to keep radio transmitting rate low and thus keep the en-
ergy consumption on a low level, yet at the same time keep the accuracy of the higher
sampling rate.

Typically, a simple edge device is a sensor node measuring some environmental
magnitudes. Typical environmental magnitudes are for example temperature, humidi-

ty, air pressure and lightness. The measured values are then sent to the cloud and in
the cloud, the data is combined with other data (for example open data) and together
used for decision processing.

2.1 Lossy Methods and Lossless Methods

Sensor data compression methods are divided in lossy and lossless methods. Many
different algorithms are presented for sensor data compression [9, 10]. The suitability
of the compression algorithm is dependent on the sensor data characteristics. For ex-
ample, many environmental magnitudes are nearly linear in short time scale, and thus
some compression algorithms are more suitable for this kind of data. Some other type
of data may require different types of compression algorithms.

If the reconstruction error accepted is more than zero, it is possible to use lossy
compression algorithm. Compression ratio is dependent on accepted reconstruction
error. Thus, the lossy compression algorithm will lead to loss of the information [11].
The advantages of lossy compression algorithms are the effective reduction of the
data and in many cases, the computational simplicity. The compression and reduction
of the data is done by eliminating some of the original information [11]. The accepted
level of reconstruction error is very application dependent. In general, the lossy com-
pression algorithms have higher a compression ratio together with lower computa-
tional complexity than lossless algorithms [12].

Many lossy algorithms have some latency and thus are not suitable for real-time
applications. There are also lossy zero-latency compression algorithms. These com-
pression methods are based on predictive filters (e.g. Kalman filter), which predict the
data values from previous samples. In this method, the same filter is used in both
sides of the network (sensor node and the user node where the data is analyzed fur-
ther), thus the same estimation is used in both sides, and the new data is sent only if
the value differs from the predicted value more than the tolerance level [8].

Lossless algorithms are able to reconstruct the original data without an error. The
lossless methods perform two steps: the statistical model is first generated and then
the second step uses this statistical model to map the input data to the bit sequences.
In these bit sequences, the frequently occurred data generates a shorter output than
infrequently occurred data. The two main encoding algorithms used are Huffman
coding and arithmetic coding. The Huffman coding is computationally simpler and
faster; however, it gives poor results in compression. Arithmetic coding is more effi-
cient in compression but more complex. In many cases, the lossless algorithms are not
suitable because the compression ratio is poor and computational complexity is higher
than in lossy algorithms [13].

2.2 Lossy Compression Algorithms Based on Linear Approximation

Lossy data compression algorithms analyzed in this paper are based mainly on piece-
wise linear approximation. Piecewise linear approximation based compression algo-
rithms are based on the fact that many environmental phenomena are near linear in

short time window [3]. These kinds of phenomena are for example temperature, hu-
midity, air pressure and wind speed.

A simple linear compression model is based on a regression line, which is calculat-
ed on the minimum of the first three measured values [13]. Least-squares regression
line is used to approximation of discrete data [14]. In the least-squares regression line,
the linear model is set to fit a set of data points. The least-squares method minimizes
the sum of squares of the deviation between the data points and the fitting line thus
gives a best fit to the data points. This is called a linear regression. A linear function y
= ax + b has two free parameters, a and b [14]. The general sum of squares of the
deviation is [14]:

 𝑆𝑆 = ∑ [𝑦𝑦𝑘𝑘 − (𝑎𝑎𝑥𝑥𝑘𝑘 + 𝑏𝑏)]2𝑁𝑁
𝑘𝑘=1 (1)

Minimizing this equation and solving for a and b give [14]:

 𝑎𝑎 = ∑ 𝑥𝑥𝑘𝑘 ∑ 𝑦𝑦𝑘𝑘−𝑁𝑁
𝑁𝑁
𝑘𝑘=1 ∑ 𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘

𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑘𝑘=1

�∑ 𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1 �

2
−𝑁𝑁∑ 𝑥𝑥𝑘𝑘

2𝑁𝑁
𝑘𝑘=1

 (2)

 𝑏𝑏 = ∑ 𝑥𝑥𝑘𝑘 ∑ 𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘−
𝑁𝑁
𝑘𝑘=1 ∑ 𝑥𝑥𝑘𝑘

2 ∑ 𝑦𝑦𝑘𝑘
𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑘𝑘=1

�∑ 𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1 �

2
−𝑁𝑁∑ 𝑥𝑥𝑘𝑘

2𝑁𝑁
𝑘𝑘=1

 (3)

The parameters a and b give the best line fit to the N data points. To use these formu-
las it is needed to sum xk, xk

2, yk, xkyk, and square the sum of xk [14]. If the regression
line is calculated from the first three measurements, then N is 3.

If the data is nearly linear, this regression line gives the prediction for the follow-
ing measured data points with a certain error bound e. When the measured data point
falls out of the error bound ±e, then the new regression line is calculated. Hence, the
data will be presented in piecewise linear segments.

There are several different versions of this kind of algorithm presented in literature.
The algorithm is named here as Linear Regression based Temporal Compression
(LRbTC). The algorithm is as follows:

1. Get the next three measured values and calculate the regression line to fit those
three values.

2. Store (send) regression line point at time moment of the first measured value used
to calculate regression line.

3. Get next measured value and compare it to the regression line.
4. If the difference is under the error bound e, then go to 3. Else, continue onto the

next step.
5. Store (send) the regression line point when the measured value was last time under

the error bound and go to 1.

Fig. 1 shows an example of this linear regression based compression for sensor data.
Original temperature data is marked in blue circle. The regression line is calculated
from the first three measured values (20, 20.3 and 20.1). Then following measured
values are compared to the regression line value on that time moment. Regression line
continues until the difference between measured value and regression line exceed the

error bound e, which is in this example set to 0.5. Regression line is the green line in
Fig. 1. At time moment 11 the difference between regression line and measured value
exceeds 0.5, thus the first regression line is set to end at time moment 10. From time 1
to 10, the compressed data includes only the starting point of the regression line and
the end point of that line. The next regression line is calculated from the measured
values in time moments 11 to 13. At time moment 15, the difference exceeds the error
bound and thus the new line is calculated from the values at time moments 15-17. In
20, the difference exceeds again the error bound. The first 19 measured values (time
moments 1 to 19) are compressed to 6 values (three regression lines).

Fig. 1. Linear Regression based Temporal Compression (LRbTC) algorithm example.

In the example in Fig. 1, the error bound was set to 0.5. Thus, the measured value and
regression line value should not exceed 0.5. This can anyway happen in time mo-
ments that are used to calculate the regression line.

The modified version of the LRbTC (M-LRbTC) algorithm corrects the problem if
the difference between regression line and the data values used to calculate this re-
gression line exceed the error bound e. The modified version of the algorithm is as
follows:

1. Get the next three measured values and calculate the regression line to fit those
three values.

2. Compare the regression line and three values used to calculate the line.
3. If the difference is greater than error bound e, then store (send) the first two data

points and get the next two measurement values and calculate new regression line
and go to 2, else continue onto the next step.

4. Get the next measured value and compare it to the regression line.
5. If the difference is under the error bound e, then go to 4. Else, continue onto the

next step.
6. Store (send) the last regression line point when the measured value was under the

error bound and go to 1.

Lightweight temporal compression (LTC) was introduced in [3]. It is simple and very
efficient compression algorithm for microclimate type data in a small enough time

window. LTC’s effectivity to compress data depends on the data characteristics. For
linear type environmental data, it can obtain up to 20-to-1 compression ratio [3].
Compression ratio is also dependent on error bound used. It is recommended to use
the sensor manufacturer’s specified accuracy value as the error bound in LTC algo-
rithm [3]. For example if the sensor used is a temperature sensor with 0.5 degrees
accuracy, it is reasonable to use 0.5 as the error bound.

The LTC algorithm is explained in detail in [3, 11, 15, 16] and a modified version
in [17]. The linear model starts with the first data value as a starting point. The lower
line and upper line (limit lines) are drawn from the starting point to the next measured
value ±e as seen in Fig. 2 a. The limit lines are tightened from the following values
when error bound extreme or extremes are inside the previous limit lines as in Fig. 2
b. and c. The measured data is discarded from the linear model if the measurement
cannot fit inside upper line and lower line determined by the previous data with the
error bound ±e. Then the new linear model starts using as a starting point the middle
point of the upper line and lower line in last time moment included in the linear seg-
ment. This procedure of the algorithm can be seen in Fig. 2 d.

a) b)

c) d)

Fig. 2. Lightweight temporal compression (LTC) algorithm.

The reconstruction error never exceeds the error bound e in the LTC algorithm. The
LTC algorithm has low computational complexity and thus it is suitable for con-
strained edge devices such as sensor nodes [17]. In Fig. 3, the LTC is compared to
previously presented linear regression based algorithm.

Fig. 3. LTC compared to the basic linear regression based algorithms.

The disadvantage of the LTC is that it is not well suited for real-time applications [8]
and its suitability in general is very application dependent. LTC uses linear interpola-
tion to represent the original signal, and the linear interpolation model is known only
when the both extremes of the linear part is known. This introduces significant laten-
cy for the model [8]. The linear regression based algorithms presented previously
suffer from the same problem.

2.3 Transform Based Compression Methods

Discrete Fourier Transform (DFT) is a well-known transform based algorithm. It is
simple to use for compression by using the Fast Fourier Transform (FFT) algorithm
[18]. The FFT algorithm expresses the time-series signal in frequency representation.
By removing the coefficients with less energy, it is possible to reduce the amount of
data and still keep the information to rebuild the time series data with reasonable re-
construction error. When the FFT is taken over a window of N samples and the first
sample and last sample differ a lot, the information of discontinuity is spread across
the frequency spectrum. To prevent this discontinuity it is possible to overlap the
windows [18].

Another well-known transform based algorithm is Discrete Cosine Transform
(DCT) and Modified Discrete Cosine Transform (MDCT) [12, 18, 19]. It has several
advantages compared to FFT algorithm [18]. The DCT coefficients are real numbers;
thus there is no need to deal with complex numbers. This saves memory and is less
complex. The DCT also has the information concentrated to the few low-frequency
components and the DCT does not suffer the edge discontinuity problem like FFT.
The DCT is a well known and widely used compression algorithm for example in
image compression and for time series type sensor data.

3 Testing the Algorithms with Real Microclimate Data

The linear approximation based compression algorithms are tested for microclimate
type data and compared to the DCT algorithm. The datasets tested here are gathered
from the Finnish Meteorological Institute’s open data service [20]. Finnish Meteoro-
logical Institute has about 400 observation stations in Finland. Not all the stations
have the same measured variables. For this research, Salla Naruska station’s data
from year 2018 in 10 minutes time sampling rate was chosen. The variables chosen
were temperature, air pressure and wind speed. Salla Naruska measurement station is
located in eastern Lapland and known as one of the coldest places in Europe. The
exact situation of the station is: latitude 67.16226, longitude 29.17766 in decimal
degrees. The temperature is in Celsius degrees (ºC), air pressure in hectopascals (hPa)
and wind speed in meters per second (m/s). Th wind speed is measured in 10 minutes
average. All variables are measured with one decimal resolution.

One year measurements in 10 minutes time interval mean 51,961 measurements for
each variable. Some data was missing; however, the missing points were linearly
interpolated. In air pressure data in total 102 points were missing, in temperature data
101 points were missing and in wind speed data 1,077 points were missing. For com-
parison, also the same data in one-hour measurement interval was used. This one-hour
interval data for the whole year 2018 includes 8,761 measurements points for each
magnitude. The missing values were also linearly interpolated.

The compression algorithms chosen were simple linear regression based approxi-
mation algorithm (LRbTC), modified linear regression based algorithms (M-LRbTC)
and lightweight temporal compression (LTC). Basic discrete cosine transform (DCT)
was used for comparison.

The algorithms were tested with MATLAB simulation. LRbTC, M-LRbTC and
LTC algorithms were programmed in MATLAB by using mainly functions polyfit
and polyval. Polyfit function was used for linear regression in LRbTC, and M-LRbTC
and to create upper and lower lines in LTC instead of equations 2 and 3 [21].

Discrete cosine transform (DCT) was tested by using the MATLAB built-in func-
tion dct. In this example, the DCT was used with window of five measured values to
calculate DCT. It was then tested with different threshold values to cancel the small-
est coefficient values. After rebuilding the signal, the maximum difference (variation)
from the original values was calculated.

Algorithms were compared to each other by compression ratio versus reconstruc-
tion error. The compression ratio (CR) was calculated by:

𝐶𝐶𝐶𝐶 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑜𝑜
𝑐𝑐𝑜𝑜𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑𝑜𝑜𝑑𝑑𝑜𝑜

 (5)

Thus, the bigger the CR value is, the more efficient the compression algorithm is. The
CR varies significantly according the error bound e used.

Temperature data was tested first. In the total 51,961 measured values the highest
temperature was +30.4 ºC and the lowest temperature -33.8 ºC. With 10-minute
measurement interval, the temperature data is mostly near linear; however, in some
extremes the temperature changes quite a lot between consecutive measurements.

LRbTC algorithm showed very big reconstruction errors for tested temperature da-
ta, which is because when measuring the regression line, the values used to calculate
may differ from the regression line more than the error bound e used. The data used is
with 10-minute interval and in extremes, the values may differ significantly from
measurement moment to the next moment. Higher measurement sampling rate would
help the situation.

The modified version of the basic linear regression based algorithm (M-LRbTC)
works as it is intended. It was tested with different quantity of measurement values to
calculate the regression line. In Fig. 4, the red line is used with three values to calcu-
late the regression line; cyan line is with four values and magenta with five values.

Fig. 4 illustrates the results for M-LRbTC, LTC and DCT algorithms for tempera-
ture data. With typical error bound e = 0.5 ºC, the M-LRbTC algorithm can achieve
3.9-4.8 compression ratio. LTC is significantly more effective with CR = 9.5. DCT
was tested with five values time window to calculate DCT. DCT compression ratio is
significantly lower compared to the other tested algorithms. DCT suffers from the
small window used and it can achieve higher compression ratios with bigger window
used. Small time window was chosen to be more realistic for sensor data stream.

Fig. 4. Linear approximation based compression algorithms and DCT for temperature data.

Fig. 5 shows the results for the air pressure data. Air pressure values varied between
976.4 hPa – 1056.4 hPa. The variation is nearly linear in short time window, however,
the data includes few clear errors. Three times the air pressure value changes from
measurement to the next more than it is normally possible. The biggest difference in
consecutive measurements is 12.7 hPa (in 10 minutes), which is clearly an error.
Normally the air pressure can change up to 5 hPa/hour and only in some very quickly
progressing low pressure it can be more than 5 hPa/hour [4]. The quick changes in air
pressure data can be due to clear measurement error or for example due to sensor
calibration. The results for the air pressure data are similar to the temperature data,
except the compression ratios are much higher. This indicates that the air pressure
data is behaving very linearly with the 10-minute measurement interval. The LTC
algorithm can achieve high compression ratios.

Fig. 5. Linear approximation based compression algorithms and DCT for air pressure data.

In Fig. 6 are the results of the wind speed measurements. Wind speed is measured in
10-minute average values. Wind speed is a different characteristic compared to the
temperature and air pressure data. Wind speed can remain quite a long period in 0
m/s. Wind speed can also change quickly and quite significantly; however, here the
10-minute average measurement averages the results significantly. The compression
ratios for wind speed data are on the same level as for the temperature data.

Fig. 6. Linear approximation based compression algorithms and DCT for wind speed data.

In every comparison, it can be seen that LTC is the most effective compression meth-
od. M-LRbTC also works well and it is a very simple algorithm and easy to apply.
Table 1 illustrates a comparison of the compression algorithms between two different
datasets with error bound e set to 0.5 for each quantity. The datasets are the same 10-
minute interval sets as used previously and also with 1 hour measurement interval. It
can be seen in table 1 that all compression algorithms are significantly more effective
for 10-minute sampling rate data. This is because with 10-minute sampling rate, the
data behaves more linearly.

Table 1. Comparison of the compression ratios for 10 min and 1 hour interval datasets.

Compression
algorithm

Temperature (e = 0.5 °C) Air pressure (e = 0.5
hPa)

Wind speed
(e = 0.5 m/s)

10 min 1 hour 10 min 1 hour 10 min 1 hour
M-LRbTC, 3 values 3.9 1.85 8.94 3.05 2.62 1.88
M-LRbTC, 4 values 4.46 1.95 9.94 3.45 3.01 2.04
M-LRbTC, 5 values 4.78 1.86 10.75 3.79 3.18 1.97
LTC 9.49 3.19 28.22 8.28 5.09 3.03
DCT 3.07 1.75 4.63 2.72 2.6 1.8

The disadvantage in these linear approximation based algorithms is the latency. These
methods are not directly suitable for real-time applications. LRbTC based methods
are possible to modify to work better for almost real-time operations: After calculat-
ing the new regression line, the first point of the line and line coefficients can be sent.
The receiver can use that information until the new point and line are received. Thus,
the latency is in maximum when the new regression line is calculated, and it depends
on how many point data is used for calculating the regression line.

4 Conclusions and Future Work

Compression algorithms were tested with some real measurement data. In this case,
the environmental microclimate data such as temperature, air pressure and wind speed
were used. Many environmental quantities are near linear in nature at least if the ob-
servation window is short. Linear approximation based compression algorithms bene-
fit from this environmental data behavior. In this research, it was shown that these
simple compression algorithms are rather efficient for this kind of data. The perfor-
mance of compression algorithms for compression compared to reconstruction error
was the main property to compare. The next step will be to test these algorithms in
edge devices and to take into account the computational complexity of the algorithms.

References

1. Väänänen, O., Hämäläinen, T.: Requirements for Energy Efficient Edge Computing: A
Survey. In: The 18th International Conference on Next Generation Wired/Wireless Ad-
vanced Networks and Systems NEW2AN 2018, August 29 - 31, 2018, St.Petersburg, Rus-
sia. doi: 10.1007/978-3-030-01168-0_1

2. Alrowaily, M., Lu, Z.: Secure Edge Computing in IoT Systems: Review and Case Studies.
In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, pp. 440-444.
(2018). doi: 10.1109/SEC.2018.00060

3. Schoellhammer, T., Osterwein, E., Greenstein, B., et al.: Lightweight temporal compres-
sion of microclimate datasets. In: Proceedings of the 29th Annual IEEE International Con-
ference on Local Computer Networks IEEE Computer Society, pp. 516-524. (2004)

4. Finnish Meteorological Institute, https://ilmatieteenlaitos.fi/ilmanpaine
5. Norbu, J., Pobkrut, T., Siyang, S., Khunarak, C., Namgyel, T. and Kerdcharoen, T.: Wire-

less Sensor Networks for Microclimate Monitoring in Edamame Farm. In: 2018 10th In-

ternational Conference on Knowledge and Smart Technology (KST), Chiang Mai, pp. 200-
205. (2018) doi: 10.1109/KST.2018.8426200

6. Muhammad, A. R., Setyawati, O., Setyawan R. A. and Basuki, A.: WSN Based Microcli-
mate Monitoring System on Porang Plantation. In: 2018 Electrical Power, Electronics,
Communications, Controls and Informatics Seminar (EECCIS), Batu, East Java, Indone-
sia, pp. 142-145. (2018) doi: 10.1109/EECCIS.2018.8692849

7. Rathore, P., Rao, A. S., Rajasegarar, S., Vanz, E., Gubbi J. and Palaniswami, M.: Real-
Time Urban Microclimate Analysis Using Internet of Things. In: IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 500-511, April 2018. doi: 10.1109/JIOT.2017.2731875

8. Giorgi, G.: A Combined Approach for Real-Time Data Compression in Wireless Body
Sensor Networks. In: IEEE Sensors Journal, vol. 17, no. 18, pp. 6129-6135, 15 Sept.15,
2017.

9. Bose, T., Bandyopadhyay, S., Kumar, S., Bhattacharyya, A., Pal, A.: Signal Characteristics
on Sensor Data Compression in IoT - An Investigation. In: 2016 IEEE International Con-
ference on Sensing, Communication and Networking (SECON Workshops), pp. 1-6. Lon-
don (2016)

10. Ying, Y. B.: An energy-efficient compression algorithm for spatial data in wireless sensor
networks. In: 2016 18th International Conference on Advanced Communication Technol-
ogy (ICACT), Pyeongchang, pp. 161-164. (2016) doi: 10.1109/ICACT.2016.7423312

11. Fallah, S. A., Arioua, M., El Oualkadi, A. and El Asri, J.: On the performance of piecewise
linear approximation techniques in WSNs. In: 2018 International Conference on Advanced
Communication Technologies and Networking (CommNet), Marrakech, pp. 1-6. (2018)

12. Jaafar K. Alsalaet, Abduladhem A. Ali, Data compression in wireless sensors network us-
ing MDCT and embedded harmonic coding, ISA Transactions, Volume 56, Pages 261-
267, (2015) ISSN 0019-0578, https://doi.org/10.1016/j.isatra.2014.11.023.

13. Aggarwal, Charu C.: Managing and Mining Sensor Data. Springer. 2013. DOI:
10.1007/978-1-4614-6309-2

14. Lopez, Robert J. Advanced Engineering Mathematics. Addison-Wesley. United States of
America (2001). ISBN: 0-201-38073-0

15. Sharma, R.: A data compression application for wireless sensor networks using LTC algo-
rithm. In: 2015 IEEE International Conference on Electro/Information Technology (EIT),
Dekalb, IL, pp. 598-604. (2015) doi: 10.1109/EIT.2015.7293435

16. Azar, J., Makhoul, A., Darazi, R., Demerjian, J. and Couturier, R.: On the performance of
resource-aware compression techniques for vital signs data in wireless body sensor net-
works. In: 2018 IEEE Middle East and North Africa Communications Conference
(MENACOMM), Jounieh, pp. 1-6. (2018) doi: 10.1109/MENACOMM.2018.8371032

17. Parker, D., Stojanovic, M. and Yu, C.: Exploiting temporal and spatial correlation in wire-
less sensor networks. In: 2013 Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, pp. 442-446. (2013) doi: 10.1109/ACSSC.2013.6810315

18. Zordan, D., Martinez, B., Vilajosana, I. and Rossi, M.: On the Performance of Lossy
Compression Schemes for Energy Constrained Sensor Networking. In: ACM Trans. Sen.
Netw. 11, 1, Article 15, 34 pages. (2014). doi:
http://dx.doi.org.ezproxy.jyu.fi/10.1145/2629660

19. Tan, L.: Digital Signal Processing: Fundamentals and Applications. Academic Press,
Elsevier, United States of America (2008), ISBN: 978-0-12-374090-8

20. Finnish Meteorological Institute’s open data –service. https://en.ilmatieteenlaitos.fi/open-
data

21. Matlab polyfit function documentation.
https://se.mathworks.com/help/matlab/ref/polyfit.html

https://doi.org/10.1007/978-1-4614-6309-2

IV

LINEAR APPROXIMATION BASED COMPRESSION
ALGORITHMS EFFICIENCY TO COMPRESS

ENVIRONMENTAL DATA SETS

by

Olli Väänänen, Mikhail Zolotukhin & Timo Hämäläinen, 2020

Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in
Intelligent Systems and Computing, vol. 1150, pp. 110-121, Springer, Cham.

https://doi.org/10.1007/978-3-030-44038-1_11

Reproduced with kind permission by Springer.

https://doi.org/10.1007/978-3-030-44038-1_11

Linear Approximation Based Compression Algorithms
Efficiency to Compress Environmental Data Sets

Olli Väänänen1, Mikhail Zolotukhin2 and Timo Hämäläinen2
1 Industrial Engineering, School of Technology, JAMK University of Applied Sciences,

Jyväskylä, Finland
olli.vaananen@jamk.fi

2 Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
mikhail.m.zolotukhin@jyu.fi, timo.t.hamalainen@jyu.fi

Abstract. Measuring some environmental magnitudes is a very typical
application in the field of Internet of Things. Wireless sensor nodes measuring
these environmental magnitudes are often battery powered devices. Thus, the
energy efficiency is an important topic in these measuring devices. The most
efficient method to reduce energy consumption in wireless devices is to reduce
the amount of data needed to transmit via wireless connection. A simple
method to reduce the amount of the data is to compress sensor data.
Environmental data behaves quasi linearly in short time window and many
compression algorithms utilize this data behavior. In this paper the different
environmental data sets characteristics and their effect on compression
algorithms’ compression ratio are evaluated. The results can be used to evaluate
and choose the suitable compression algorithm for the application and to predict
the lifetime of the battery powered device.

1 Introduction

In the field of Internet of Things (IoT), sensors measuring some environmental
magnitudes are very typical applications. The IoT applications measuring and
utilizing some environmental data can be found and used in many sectors in the
society. The need to measure some environmental magnitudes is especially typical in
agricultural applications [1]. In agricultural applications, the devices are often spread
across the field and thus the resources available are often limited, e.g. reliable power
supply and good quality wireless connections, which often also means limited
computational power.

In agriculture, the Internet of Things applications can be used for e.g. crop
management, crop protection, soil monitoring and water management. [2, 3] Many
IoT applications and solutions in the field of agriculture are still in their infancy;
however, the field is changing very fast [4].

Energy efficiency and energy saving are very important aspects in battery powered
wireless sensor nodes [5, 6]. One very efficient way to reduce energy consumption in
wireless sensor nodes is to compress the sensor data. By compressing the sensor data,
it is possible to reduce the amount of data needed to transmit via a wireless

connection. Wireless connection is known to be the most energy consuming operation
in the wireless sensor node. [7]

Compressing the amount of actual sensor data needed to transmit wirelessly is only
one way to reduce energy consumption. [6] However, due to the simplicity of many
compression methods presented, it is a very easy and powerful method for
maximizing the lifetime of a battery powered device.

In this paper, several data linearity-based compression methods have been
evaluated and compared to each other. The efficiency of the compression methods to
compress certain environmental data sets are evaluated and the effect of the data sets’
characteristics in the compression ratio achieved have been evaluated. The correlation
of certain data sets’ characteristics to the compression ratio has been evaluated. With
the correlation found, it is possible to choose the suitable compression method for a
certain application.

2 Compression Methods Based on Time Series Data Linearity

Various sensor data compression methods have already been introduced several
decades ago. After the proliferation of the wireless sensor networks (WSN) and the
Internet of Things (IoT), the topic of sensor data compression has received a great
deal of new attention in the field of research. [8] Typical sensor data sets are for
example some environmental variable data sets such as temperature, humidity, air
pressure and wind speed. Additionally, different Wireless Body Sensors measuring
some parameters or behavior of the human body have gained much attention [9].
They are used in different wearable and wellness devices and applications.

There are various types of compression methods presented in research papers.
There are time domain and transform domain methods. Well-known transform
domain methods are for example Wavelets, Chebyshev Transform, Discrete Fourier
Transform (DFT) and Discrete Cosine Transform (DCT). Many times the domain
methods are based on data linearity. Linearity based methods are for example
Piecewise Linear Approximation (PLA), Lightweight Temporal Compression (LTC),
Piecewise Aggregate Approximation (PAA) and Piecewise Constant Approximation
(PCA). These methods are lossy compression methods. [6, 10-12]

Transform domain methods are not well suited for constrained wireless sensor
nodes due to their computational complexity and limited memory. [10] Many
compression methods such as LTC also suffer from latency and are not well suited for
real-time or near real-time applications [13]. DFT and DCT also suffer latency
dependent on the window size N used.

Even though linear approximation and data linearity-based methods are well
known and simple methods, there is recent and ongoing research on the topic. Several
different variations of these methods have been introduced during recent years. [7, 11,
14, 15]

The LTC is very efficient compression method for environmental data with a linear
nature at least in short time window. Its compression ratio can be quite high. For
temperature data with 10 minutes measuring rate and error bound ε = 0.5 °C, the LTC
algorithm can achieve a compression ratio 10 to 1. The compression ratio is very

dependent on the data set characteristics and the error bound used. [11] At the same
time, it is rather a simple compression algorithm and thus it can be used in
constrained IoT devices with limited memory and processing power.

3 Effect of Environmental Data Set on Compression Ratio

Many environmental magnitudes behave near linearly if the observation window is
short enough. [16] For example, if the environment microclimate temperature is
rising, it can be predicted that it will continue rising at least in the near future. This
linear behavior can be used to compress the amount of data needed to transmit from
the sensor node. Simple sensor data compression methods utilizing this behavior are
based on data linearity. Perhaps the simplest compression algorithm for this kind of
data is to use linear regression of n (n ≥ 3) measured values and with allowing certain
error bound ±ε to the calculated regression line. The calculated regression line with
error bound can be used to predict the following values. There are many different
versions of linearity-based compression methods presented in the literature. [11, 16,
17] This kind of methods are lossy methods.

Environmental data has a linear behavior if the observation window is short. The
more constant the measured magnitude remains, the more efficiently these data
linearity-based compression algorithms compress the data. [12] However, the
environmental magnitudes do not remain constant; instead, the values are mostly
changing. There is natural variation in the values of environmental magnitudes in
function of time but with allowing some random variation in values, the main trend is
often rather stable for some time period. Many compression methods utilize this
behavior.

3.1 Data Set Characteristics Evaluated

In this paper, the efficiency of different linearity-based time series compression
algorithms to compress environmental data is tested for different environmental data
sets. Data sets’ characteristics are evaluated, and the parameters affecting the
compression ratio have been evaluated.

The tested and evaluated data set parameters are:

• AC, the average absolute change between consecutive measurements in
the whole data set

• SD, the standard deviation of the change between consecutive
measurements in the whole data set

For the measured values xi: i [1, n], the average change (AC) between

consecutive measurements is calculated with the equation (1):

(1)

Standard deviation (SD) is calculated from the consecutive measurement change
values with the equation (2):

(2)

where,

(3)

3.2 Data Sets

The used data sets were gathered from the Finnish Meteorological Institute’s (FMI)
open data service [18]. The data sets gathered from FMI service were Naruska
measurement station data from whole year 2018. The Naruska measurement station is
located in Eastern Lapland in Finland. It is one of the official measurement stations in
Finland. Temperature, air pressure and wind speed data with a 10-minute
measurement interval were used. The data sets were divided into monthly data sets,
and the whole year data set was also used. 20-minute, 30-minute, 40-minute, 50-
minute and 1-hour measurement interval data sets were derived from the original 10-
minute measurement interval data set by cancelling the values from the original data
set.

Thus, there were in total 78 data sets for each environmental variable (temperature,
air pressure and wind speed).

The whole year 2018 data set with a 10-minute measurement interval was the
largest data set with 51 961 measured values for each variable. The smallest data set
used was February 2018 with 1-hour measurement interval with 672 measured values
for each variable.

The average change AC values and standard deviation SD values were compared to
the compression ratios achieved with different time series compression algorithms.
The compression ratios were calculated with the equation (4):

(4)

where the original data is the amount of values in original data set and the

compressed data is the amount of values in a compressed data set.

4 Compression Algorithms’ Compression Ratio Compared to
the Characteristics of Selected Data Set

Compression algorithms tested and evaluated were Lightweight Temporal
Compression (LTC) [16] and Linear Regression based Temporal Compression
(LRbTC) [11]. The LTC algorithm is originally presented in reference [16]. LTC uses
the piecewise linear function to estimate data points. LTC calculates the upper and
lower bound from every new data point by using the selected error bound. The LTC
algorithm is explained in detail in references [7, 11, 16]. LRbTC algorithm uses the n
measured values to calculate the regression line which can be used to predict
following values with allowing a certain error bound ±ε from the line. When the
measured value falls out from the allowed area, the new regression line is calculated
which predicts the future values. [11] LRbTC algorithms were tested with 3, 4 and 5
values used to calculate the linear regression line. The error bound used was 0.5 ºC
for temperature data sets, 0.5 hPa for air pressure data sets and 0.5 m/s for wind speed
data sets. The compression ratios achieved were compared to the data sets’
characteristics SD and AC, which have been previously explained in this paper. The
compression algorithms were programmed on Matlab as in reference [11]. The
LRbTC algorithm used was the slightly modified version M-LRbTC [11], and the
LTC algorithm used was the original version originally presented in the reference
[16].

4.1 Temperature Data Sets

For temperature data sets (78 data sets in total) the results can be seen in Fig. 1. Fig. 1
presents the compression ratio for each temperature data set with LTC and LRbTC
algorithms. Discrete Cosine Transform (DCT) algorithm with window size of 5
values was used just for comparison. The results are presented in the function of the
standard deviation (SD) of the data set’s consecutive measurements change (on the
left) and in the function of average change (AC), as previously explained in this paper.
The trend line (solid line) is visually the best fit polynomial regression line of the data
points presented.

Fig. 1 clearly indicates that the LTC is the most effective compression algorithm
compared to the others. The similar results have been achieved in reference [11]. The
highest compression ratio (19.24) has been achieved with LTC algorithm from
December 2018 data set with a 10-minute measurement interval. The highest
compression ratio with LRbTC is 8.21 from the same data set. LRbTC with 3 values
used to calculate regression line is slightly worse than the versions with 4 and 5
values used to calculate the regression line. The difference between 4 and 5 values
used to calculate regression line is almost negligible.

The correlation between the compression ratio and the standard deviation of the
consecutive measurements change is clear; however, the correlation is not linear. A
small standard deviation means that the value changes are small from measurement to
measurement, which means more constant and linearly behavior data. When the SD
value decreases from the value 1 to 0.2, the compression ratio raises strongly.

In Fig. 1 on the right side, the same data sets’ compression ratios were compared to
the average change (AC) in the absolute value of the consecutive measurements’
change as explained previously in this paper. Similar results can be seen with the AC
as with the SD. The correlation is similar as in SD comparison except the dispersion is
smaller in AC comparison. Thus, it seems that the AC predicts the compression ratio
achieved better than the SD.

Fig. 1. Compression ratio in function of SD (on the left) and AC (on the right) from the
temperature data sets.

The trend lines (fitting lines) in Fig. 1 are 8th degree polynomials (y = p1*x^8 +
p2*x^7 + p3*x^6 + p4*x^5 + p5*x^4 + p6*x^3 + p7*x^2 + p8*x + p9). The 8th
degree polynomials were chosen here because they give visually the best fit for the
data. Additionally, the norm of residuals value, which is the measure of the goodness
of the fit, was best or almost the best of the basic fitting functions. The smaller the
norm of residuals value is, the better the fit. The polynomial coefficients and norm of
residuals values for each compression algorithm in function of SD and AC can be seen
in Table 1 and Table 2.

Table 1. Correlation between the compression ratio and standard deviation for temperature
data sets, polynomial coefficients and the norm of residuals values.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 6.7423 6.2854 6.8386 6.548
p2 -72.267 -67.776 -70.398 -80.376
p3 325.72 307.75 306.91 406.94
p4 -805.25 -767.62 -739.53 -1118.2
p5
p6
p7
p8
p9

1192.3
-1081.4
587.81
-178.12
26.555

1148.7
-1055.3
583.09
-180.98
28.115

1076.8
-971.24
533.42
-167.79
27.281

1831.5
-1837.2
1109.9
-378.84
63.733

Norm of
residuals

2.4946 2.5065 2.5082 7.0922

Table 2. Correlation between the compression ratio and average change for temperature data
sets, polynomial coefficients and the norm of residuals values.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 177.09 181.2 141.07 35.377
p2 -1166.5 -1174.1 -896.79 -331.22
p3 3232.7 3207.3 2407.7 1253.5
p4 -4906.3 -4813.2 -3566.6 -2552
p5
p6
p7
p8
p9

4447.9
-2465.2
821.88
-156.24
16.452

4335.5
-2405
811.44
-158.91
17.68

3197.7
-1791.4
625.16
-131.74
16.636

3089
-2295
1036
-270.25
37.549

Norm of
residuals

1.4334 1.3387 1.4053 3.9424

The norm of residuals values demonstrate that the correlation between compression

ratio and AC is better than with SD.
If the data values are varied a great deal from measurement to measurement, it

means faster changes in data in function of time. This indicates that this kind of data
have higher frequencies. The frequency spectrum of the data set can be calculated
with Discrete Fourier Transform (DFT). The data set DFT was calculated in Matlab
with FFT (Fast Fourier Transform) function. The comparison of the frequency
spectrum of two very different temperature data sets can be seen in Fig. 2. The red
line is FFT from data set: Naruska July 2018 with a 1-hour interval. It has the
standard deviation SD = 2.021 and average change AC = 1.437. The compression
ratio with LTC is 2.439. The blue line is the FFT from data set: Naruska December
2018 with a 10-minute interval. It has the SD = 0.235 and AC = 0.106. The
compression ratio with LTC algorithm is 19.241. Data sets have been normalized as
both have been sampled with the same sampling rate. The frequency spectrums
indicate that December 2018 with the 10-minutes measurement interval behaves more
linearly because it has lower energy in high frequencies. The higher levels in high
frequencies in July 2018 data indicate quick changes from measurement to
measurement. Both data sets can be seen in function of time in Fig. 3.

In summertime, the temperature is changing on a daily basis approximately 15-20
degrees according to July 2018 measurement as can be seen in Fig. 3 on the left. With
1-hour measurement interval that means a significant change in value between two
consecutive measurements. In wintertime, the change is not that big daily and there
are long periods when the temperature remains quite constant as can be seen from
December 2018 data (Fig. 3 on the right side) and specially when the measurement
interval is short like 10 minutes in this example, then the data behaves quite linearly
and remains during many consecutive measurements quite constant. Standard
deviation and average change values indicate this.

Fig. 2. The frequency spectrum of two temperature data sets.

Fig. 3. The data sets with the highest AC and lowest AC.

The results presented here can be used to evaluate the suitability of these
compression algorithms to compress certain data sets if the data characteristics are
known. The choice between three different versions of the LRbTC can be made by
evaluating the compression efficiency and computational complexity. In real
measurement applications the future data set’s characteristics are not known but the
history data can be used to predict the probable data behavior and thus to choose the
suitable algorithm.

4.2 Air Pressure Data Sets

The similar observations as for temperature data sets were done for air pressure data.
The results can be seen in Fig. 4 where the left side illustrates the compression ratios
of different compression algorithms in function of the SD, as described in this paper.

It can be seen in Fig. 4 on the left side that some data sets are dispersed slightly far
from the other points. Those data sets are October 2018 data sets with all
measurement intervals used. There is a clear error in the data because during October
2018 in air pressure data there is two times over 10 hPa air pressure change in 10
minutes. The air pressure change of more than 5 hPa/hour is rare and occurs only if
there is an incoming thunderstorm [18]. Those two big sudden and atypical changes in
air pressure rise the SD value relatively much; yet, it is not seen in AC value. For
example, in October 2018 the air pressure data with 10-minute measurement interval

have 4 064 measured values. Thus, those two big changes in measured values do not
affect the AC value much. Thus, this behavior cannot be seen in Fig. 4 on the right
side which is the compression ratio in function of AC.

The trend lines in Fig. 4 are fitting lines which are in this case 4th degree
polynomials (y = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5). The coefficients of fitting
lines and the norm of residuals can be seen in Table 3 and Table 4.

Fig. 4. Compression ratio in function of the SD (on the left side) and the AC (on the right side)
for the air pressure data.

Table 3. Correlation between the compression ratio and standard deviation for air pressure
data sets, polynomial coefficients and norm of residuals.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 168.35 148.3 215.54 620.34
p2 -351.23 -316.4 -439.59 -1272.5
p3 277.08 257.58 338.11 990.82
p4 -99.784 -96.847 -119 -353.54
p5 17.371 18.119 20.632 58.903
Norm of
residuals

6.0527 7.6021 7.9608 23.117

Table 4. Correlation between the compression ratio and average change for air pressure data
sets, polynomial coefficients and norm of residuals.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 743.39 555.94 961.93 2788
p2 -1051.1 -837.53 -1332.6 -3821.2
p3 561.64 482.03 694.26 1982.9
p4 -139.09 -129.9 -167.6 -481.17
p5 17.099 17.713 20.423 56.847
Norm of
residuals

3.4408 4.2411 5.0525 18.369

The correlation in general is similar as with temperature data sets. The correlation

is not linear but the general behavior can be seen in Fig. 4. The compression ratios are

much higher for air pressure data than for temperature data, which indicates that air
pressure data is rather linear in behavior and it is changing slowly. The compression
algorithms based on data linearity are rather effective for this kind of data. The error
bound used was 0.5 hPa which can be rather high in some applications. If the error
bound is smaller, then the compression ratio is smaller.

4.3 Wind Speed Data Sets

Wind speed data from the Finnish Meteorological Institute’s open data service is
measured in a 10-minute average value [18]. In general, the wind speed has a slightly
different behavior compared to the other environmental data. Wind speed can remain
in 0 m/s for a while, and wind speed can also change quickly and there can be gusts.
A 10-minute average measurement evens out the quick variation; however, the wind
speed value remains in 0 m/s sometimes for long periods.

The results can be seen in Fig. 5. The correlation is again quite clear, and it is not
as non-linear as with temperature and air pressure data sets.

Fig. 5. Compression ratio in function of the SD (on the left side) and the AC (on the right side)
for wind speed data.

The trend lines in Fig. 5 are 4th degree polynomials (y = p1*x^4 + p2*x^3 +
p3*x^2 + p4*x + p5). The polynomial coefficients and the trend line norm of
residuals can be seen in Table 5 and Table 6.

Table 5. Correlation between the compression ratio and standard deviation for wind speed
data sets, polynomial coefficients and norm of residuals.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 11.793 22.697 43.109 127.38
p2 -38.01 -61.805 -126.05 -352.64
p3 47.695 67.138 141.3 372.1
p4 -28.642 -36.706 -74.163 -181.75
p5 8.804 10.612 17.597 38.372
Norm of
residuals

0.82744 0.83827 0.92181 1.7419

Table 6. Correlation between the compression ratio and average change for wind speed data
sets, polynomial coefficients and norm of residuals.

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC
p1 -13.996 23.544 113.51 274.47
p2 2.7715 -54.641 -240.49 -561.96
p3 21.602 54.168 196.51 443.05
p4 -18.535 -27.962 -76.098 -164.2
p5 6.2976 7.8401 13.9 27.494
Norm of
residuals

0.55859 0.5111 0.63325 1.1643

5 Conclusions

According to the research presented in this paper, it is possible to predict the
compression ratio for selected compression methods according to average change
(AC) and standard deviation (SD) values of the data. The correlation is better between
the compression ratio and AC than compression ratio and SD in every type of
environmental data tested. This can be seen by comparing the norm of residuals value
between AC and SD results. The AC value is also very easy to calculate from the
history data. The history data can be used to predict the compression ratio with the
selected compression method. The results can be used to choose a suitable
compression method and with the estimated compression ratio it is possible to predict
the battery powered wireless sensor node lifetime.

The best correlation is with wind speed data sets and the worst with air pressure
data set. At the same time, the compression methods selected and tested are most
efficient for the air pressure data, and the least efficient for the wind speed data,
whereas the temperature data is between these.

References

1. Poornima., Ayyanagowadar, M.S.: Internet of things in agriculture: A review. In:
Agricultural Reviews, Volume 39, issue 4. (2018) 338-340. doi: 10.18805/ag.R-1836

2. Salam, A., Shah, S.: Internet of Things in Smart Agriculture: Enabling Technologies. In:
2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, (2019)
692-695. doi: 10.1109/WF-IoT.2019.8767306

3. Reddy, S.S., Azharuddin, M.R., Khan, K.: Importance of Internet of Things in Agriculture.
In: International Journal of Recent Trends in Engineering Research. Vol.4(4), (2018) 372-
373

4. Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C.: Internet of Things in agriculture, recent
advances and future challenges. In: Biosystems engineering 164, Elsevier. (2017) 31-48.
doi: 10.1016/j.biosystemseng.2017.09.007

5. Abbasi, M., Yaghmaee, M.H., Rahnama, F.: Internet of Things in agriculture: A survey. In:
2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan,
Iran. (2019) 1-12. doi: 10.1109/IICITA.2019.8808839

6. Väänänen, O., Hämäläinen, T.: Requirements for Energy Efficient Edge Computing: A
Survey. In: The 18th International Conference on Next Generation Wired/Wireless
Advanced Networks and Systems NEW2AN 2018, St.Petersburg, Russia. (2018) doi:
10.1007/978-3-030-01168-0_1

7. Sarbishei, O.: Refined Lightweight Temporal Compression for Energy-Efficient Sensor
Data Streaming. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick,
Ireland. (2019) 550-553. doi: 10.1109/WF-IoT.2019.8767351

8. Luo, G., et al.: Piecewise linear approximation of streaming time series data with max-error
guarantees, 2015 IEEE 31st International Conference on Data Engineering, Seoul. (2015)
173-184. doi: 10.1109/ICDE.2015.7113282

9. Grützmacher, F., Beichler, B., Hein, A., Kirste, T. and Haubelt, C.: Time and Memory
Efficient Online Piecewise Linear Approximation of Sensor Signals. Sensors, 18(6), (2018)
1672. doi: 10.3390/s18061672

10. Li, J., Li, G. and Gao, H.: Novel ε-Approximation to Data Streams in Sensor Networks. In
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 6, pp. 1654-1667, 1
June 2015. doi: 10.1109/TPDS.2014.2323056

11. Väänänen, O., Hämäläinen, T.: Compression methods for microclimate data based on linear
approximation of sensor data. In: NEW2AN 2019: Internet of Things, Smart Spaces, and
Next Generation Networks and Systems: Proceedings of the 19th International Conference
on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things
and Smart Spaces, Lecture Notes in Computer Science, 11660. Cham: Springer, (2019) 28-
40. doi: 10.1007/978-3-030-30859-9_3

12. Hung, N. Q. V., Jeung, H. and Aberer, K.: An Evaluation of Model-Based Approaches to
Sensor Data Compression. In: IEEE Transactions on Knowledge and Data Engineering, vol.
25, no. 11, pp. 2434-2447, Nov. 2013. doi: 10.1109/TKDE.2012.237

13. Giorgi, G.: A Combined Approach for Real-Time Data Compression in Wireless Body
Sensor Networks. In: IEEE Sensors Journal, vol. 17, no. 18, pp. 6129-6135, 15 Sept.15,
2017.

14. Wee, C. K., and Nayak, R.: Alternate approach to Time Series reduction. In: 2018
International Conference on Soft-computing and Network Security (ICSNS), Coimbatore.
(2018) 1-4. doi: 10.1109/ICSNS.2018.8573685

15. Belov, A. A. and Proskuryakov, A. Y. Time Series Compression in Telecommunication
Systems for Environmental Monitoring of Polluting Emissions. In: 2018 XIV International
Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering
(APEIE), Novosibirsk. (2018) 391-395. doi: 10.1109/APEIE.2018.8545336

16. Schoellhammer, T., Osterwein, E., Greenstein, B., et al.: Lightweight temporal compression
of microclimate datasets. In: Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks IEEE Computer Society, pp. 516-524. (2004)

17. Aggarwal, Charu C.: Managing and Mining Sensor Data. Springer. 2013. doi: 10.1007/978-
1-4614-6309-2

18. Finnish Meteorological Institute’s open data–service. https://en.ilmatieteenlaitos.fi/opendata

V

SENSOR DATA STREAM ON-LINE COMPRESSION WITH
LINEARITY-BASED METHODS

by

Olli Väänänen & Timo Hämäläinen, 2020

Proceedings of the 2020 IEEE International Conference on Smart Computing
(SMARTCOMP)

https://doi.org/10.1109/SMARTCOMP50058.2020.00049

Reproduced with kind permission by IEEE.

https://doi.org/10.1109/SMARTCOMP50058.2020.00049

Sensor Data Stream On-line Compression with
Linearity-based Methods

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

0000-0002-7211-7668

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

0000-0002-4168-9102

Abstract—The escalation of the Internet of Things applications
has put on display the different sensor data processing methods.
The sensor data compression is one of the fundamental methods to
reduce the amount of data needed to transmit from the sensor
node which is often battery powered and operates wirelessly.
Reducing the amount of data in wireless transmission is an
effective way to reduce overall energy consumption in wireless
sensor nodes. The methods presented and tested are suitable for
constrained sensor nodes with limited computational power and
limited energy resources. The methods presented are compared
with each other using compression ratio and inherent latency.
Latency is an important parameter in on-line applications. The
improved variation of the linear regression-based method called
RT-LRbTC is tested and it has proved to be a potential method to
be used in a wireless sensor node with a fixed and predictable
latency. The compression efficiency of the compression algorithms
is tested with real measurement data sets.

Keywords—edge computing, internet of things, sensor data,
compression algorithm

I. INTRODUCTION
Simple linearity-based compression methods are not a new

research topic; however, they have gained a great amount of
attention recently due to the growing interest in the Internet of
Things and wireless sensor networks. That kind of compression
methods have been available already for decades. Most of these
methods are based on analyzing the data stream retrospectively
when all or at least a significant amount of the data need to be
already available [1]. Thus, these methods are not well suitable
for compressing the data stream in real-time or even near real-
time.

Applications using some sensor data in control could benefit
from effective real-time compression methods based on data
linearity; in particular if the measured magnitude were some
environmental magnitude which behaves quite linearly in short
time window. These kinds of rather slowly changing and thus
linearly behaving magnitudes are for example temperature, air
pressure, humidity and wind speed. These kinds of
measurements are typical in agricultural applications and in
many other different IoT applications [2].

Using some simple and computationally light compression
method can be a very effective way to save in energy
consumption and thus lengthen the lifetime of battery powered
sensor nodes which often operate wirelessly [3].

II. LINEARITY BASED COMPRESSION ALGORITHMS AND
THEIR SUITABILITY FOR REAL-TIME OPERATIONS

As mentioned in the Introduction, many linearity-based
compression methods analyzes the data retrospectively when the
data is already available. It is easy to test and find the best
possible compression algorithm if the data set is already
available. This kind of approach is useful and suitable in
Periodic Sensor Networks (PSN) [4]. In PSNs the node sends
the data periodically to the sink [5]. This kind of measurement
network does not work in real-time; however, the latency is
known and can be adjusted by adjusting the sending period
(frequency). There are many methods and protocols for PSNs to
achieve longer battery lifetime by reducing the energy
consumption with data aggregation and the amount of data
needed to transmit wirelessly. Some methods are very simple
based on constant approximation and some methods are slightly
more complex [4]. Very simple methods suitable for constrained
sensor nodes in PSNs are for example Piecewise Constant
Approximation (PCA), Adaptive Piecewise Constant
Approximation (APCA), Poor man’s compression and
Piecewise Linear Histogram (PWLH) [6][7][8][9][10][11].
These methods are so called model-based methods [1].

PCA is a very simple on-line algorithm which divides the
data stream to constant linear segments. It guarantees that the
compressed data satisfies the error bound (maximum allowed
deviation between original data and linear model) requirements
compared to the original raw data [11]. PCA divides the data set
in to fixed lengths linear segments called as windows. PCA
method first takes the number of window size of sensor signals
and calculates the difference between maximum value and
minimum value. If the difference is smaller than the error bound
accepted, then all the data points in that segment (window) are
represented with a constant value which is the middle point of
the maximum value and minimum value. This is not the most
effective method for compression, however, it is a very simple

and computationally light method. It also has a fixed latency
which is set by the window length [1][11].

APCA’s functionality is very close to PCA. It varies from
PCA thus that constant value segments vary in length. The
length of the constant value segment is as long as it still meets
the demands of the error bound. As a result of APCA’s
compression, there are constant segments of varying length.
Each segment is represented by two values, the median value of
the data points and the end time stamp of the segment [1][7]. If
this model is applied to the sensor node, then the sensor node
transmits two values after each segment to the sink (receiver).
Because the segments vary in length, the latency is not known
in advance, and the latency also varies depending on the length
of the segments. The more stable the data values remain, the
longer the segments are (higher compression ratio) which results
in higher latency.

PWLH has similarities to APCA but the linear segments
need not have constant values. Thus, the linear segments can be
represented with lines the slope of which can be other than zero
[1]. This method suffers also from the unknown length of the
linear segments, and thus the latency cannot be anticipated.

These model-based methods are not well suited for the real-
time operations with tight requirements for the latency. The
benefits in these model-based methods are that they are simple
and computationally very light. Thus, these methods are well
suited for the battery powered computationally constrained
devices.

There are also compression methods suitable to be used
directly for the data stream. One very effective linearity-based
compression method is called Lightweight Temporal
Compression (LTC) [12]. It is a lossy method like all the other
methods presented in this paper, and it is suitable to be
implemented in constrained sensor node due to its
computational simplicity. It is very effective and has a high
compression ratio for the linearly behaving environmental data
[2]. The significant drawback in this method is the latency;
hence, it is not well suited for real-time applications [13]. The
sensor node utilizing LTC algorithm sends the starting point of
the linear segment to the receiver; however, the receiver does
not know anything until the sensor node sends the end point of
the linear section to the receiver. Between that there is no
information available on the receiver side. The receiver does not
know if the value is in average rising, staying at the same level
or lowering, and after receiving the end point of the linear
segment (which is at the same time the starting point of the next
linear section), there is no information in which direction the
values are changing after that.

There are also various linear regression-based algorithms
available and presented in the field of the research. One method
is called Piecewise Linear Approximation (PLA). It uses the
linear regression to model data stream with a certain error bound
allowed from the linear segment. Each linear segment is
represented by the start and end time stamps and the line
parameters (base and slope) or by the linear segment starting
point (time stamp and value) and end point (time stamp and
value) [10]. If the data set or a part of it is already available, it is
possible to find the best amount of values to be used to calculate
a regression line which determines the longest linear segment

which still meets the error bound requirement to the data. This
kind of approach is not well suited for real-time operations.

The linear regression can be calculated from the minimum
of three data values; however, also more values can be used.
This kind of approach is presented in [2] by the authors and the
algorithm is called Linear Regression based Temporal
Compression (LRbTC). In [2] 3, 4 and 5 values are used to
calculate the regression line and have been tested to compress
some environmental data (temperature, air pressure and wind
speed). For near linearly behaving sensor data like temperature,
there is a slight improvement in compression ratio if 4 or 5
values have been used to calculate the regression line. The
disadvantage in LRbTC method is that the latency is not known
in advance. The latency depends on how well the data is suited
to the linear model. When the data behaves very linearly, it leads
to a higher compression ratio but also higher latency at the same
time. In this paper the authors present a modification for LRbTC
method towards more real-time operation with known and fixed
latency.

III. LINEAR REGRESSION BASED COMPRESSION ALGORITHMS
TOWARDS REAL-TIME OPERATION

LRbTC as presented in [2] is a very simple compression
algorithm. In basic form it is presented as a flow chart in Fig. 1.
This method is based on linear regression of the N measured
samples and the line calculated predicts future values allowing
a certain error bound ± from the line. If the data is behaving
linearly, the regression line gives quite a good prediction for the
future values.

Fig. 1. LRbTC algorithm.

As mentioned, this kind of algorithm in this form does not
present a constant latency. Step 5 in Fig. 1. happens when the
value is out of the regression line more than an error bound.
When that happens depends on the measured values and cannot
be predicted.

Model parameters: The raw data of sensor signal can be
presented as S = ‹(v1,t1), (v2,t2),… (vn,tn)›, where vi () is the
measured value and ti is the time stamp (moment). From the
compression algorithm the compressed data stream consists of

1. Get next N
values and

calculate the
regression line.

2 Send the
starting point

of the
regression line.

3. Get next
measured value and

compare it to the
regression line

4. Is the
difference

smaller than
error bound?

5. Send the end
point of the

regression line.

yes

no

the starting points and the end points of the linear segments
(ci, i), where ci is the compressed value (start or end point of the
linear regression line) and i is the time stamp for that value.
Thus, the output is LRbTC(S) = ‹(c1, 1), (c2, 2),… (cn, n)›.

One weakness in this basic version of LRbTC is in the first
step where N values are used to calculate the regression line. The
values used to calculate the new regression line can be more than
an error bound away from the calculated line. In [2] the modified
version M-LRbTC has been introduced, and its functionality can
be seen in Fig. 2.

Fig. 2. Modified LRbTC (M-LRbTC).

In M-LRbTC version, after calculating the regression line,
the distance of the values used to calculate the regression line
are compared to the line. If the difference is bigger than the error
bound, then the first two data points ‹(v1,t1),(v2,t2)› are stored
and/or sent to the sink, and the next N values are used to
calculate the new regression line. This version has the same
limitations as the original version for the real-time operations
due to unknown latency.

One improvement for this kind of linear regression-based
compression algorithm would be to send the regression line
parameters (slope a and base b, as the line formula is c = at + b,
where c is the value achieved from the linear model at the given
time stamp t) with the starting point time stamp of the line to the
sink (receiver). Thus, the latency would be the time of achieving
N samples (N-1 sampling steps t), and the receiving part would
know that the values follow the known line as long as the end
point of the line is received. Thus, if the N is 3, then the latency
is two times the measurement interval (2 x t) when the new
regression line is calculated. The latency in the linear section
(values following the regression line) is one measurement
interval t. When the measurement value goes off the segment

(more than error bound), then the last point of the line (which
was one interval t before) is sent to the sink. This is a
significant improvement compared to the most model-based
piecewise approximation methods presented before and also
compared to the LTC method. As a result from the compression
the data is: ‹(a1,b1, 1),(c2, 2),(a3,b3, 3),(c4, 4),… (an-1,bn-1, n-1),
(cn, n)›.

A. Towards real-time operations with predicted and constant
latency
This LRbTC (M-LRbTC) method can be developed further

to achieve an even shorter latency. When the measured value
falls off from the allowed area (line with error bound), then the
already measured values can be used to calculate the new
regression line. Then the latency is only one measurement
interval long (t). Only at the beginning of the measurement,
when the first regression line is calculated, the latency is N - 1
intervals long. Simplified flow-chart of this kind of version is
presented in Fig. 3. It is named here as Real-Time LRbTC (RT-
LRbTC).

Fig. 3. Real-time LRbTC (RT-LRbTC).

The raw data of sensor signal is S = ‹(v1,t1),(v2,t2),… (vn,tn)›.
At the beginning of the algorithm the first N (N = 3, for example)
value pairs are used to calculate the regression line. Thus, the
values ‹(v1,t1),(v2,t2),(v3,t3)› are used to calculate the regression
line (c1 = a1t + b1) parameters a1 and b1. Three values are sent
to the sink (a1,b1, 1) at time moment t3 (plus the latency from the
computational time), where 1 = t1. Thus, the algorithm latency
at the beginning is t3 - t1 = 2 x t. After that, the algorithm
compares the following measured values to the regression line
at the time of the value (step 3 in Fig. 3). When the measured
value falls out more than the error bound from the regression
line, then the new regression line (a2,b2, 2) is calculated from the
last N values and sent to the sink. 2 is the time stamp of the value
which fell out from the linear section. The receiving side knows
that the previous regression line ended one measurement
interval before (2 – t), thus the latency from the algorithm
itself is one measurement interval t.

This basic version of RT-LRbTC has the same drawback as
the original LRbTC when values used to calculate regression
line can be more than an error bound away from the regression
line. The version which corrects this problem is presented in Fig.
4.

1. Get next N
values and

calculate the
regression line

6. Send the
starting point of
the regression

line

7. Get next
measured value

and compare it to
the regression line

8. Is the
difference

smaller
than error

bound?

9. Send the end
point of the

regression line

yes

no

2. Compare the
regression line and
the values used to
calculate the line.

3. Is the
difference

smaller
than error

bound?

4. Send the first
two data

points and get
the next two

measurement
values

5. Calculate the
regression line from

the lastN values

yes

no

1. Get first N values
and calculate the
regression line.

2. Send and store the
regression line

parameters and send
the starting point time

stamp.

3. Get next
measured value and

compare it to the
regression line

4. Is the
difference

smaller than
error bound?

5. Calculate the new
regerssion line from

the last N values yesno

6. Send and store the new
regression line parameters and

the time stamp of the last
measured value used to
calcultate regression line

Fig. 4. Improved RT-LRbTC.

Fig. 4. shows in step 2 the comparison between the
regression line and the values used to calculate that regression
line. If the distance from the line is more than the error bound,
then first two values (‹(v1,t1),(v2,t2)›) are stored/sent and the new
line is calculated from the following values ‹(v3,t3),(v4,t4),(v5,t5)›.
If and when the difference is at an accepted level, then in step 6
the regression line parameters and starting time stamp of the line
(a1,b1, 1) are stored and sent to the receiver. In that point the
latency is N – 1 time steps (measurement interval) long as in the
basic version of RT-LRbTC. In step 7 the next measured values
are compared to the line and if the difference is less or equal to
the error bound (step 8), the comparison continues with the next
value. As long as this continues, there is no need to send
anything to the sink. In the sink the receiver knows that the
values measured one time step (measurement interval, t)
before are within error bound from the regression line as long as
no new line is received.

There is one measurement interval time latency because
when the measured value falls out from the linear section, then
the new line is calculated using the last N values and the new
line starts. The values sent to the sink are (a2,b2, 2). The previous
line is ended one time step before (2 – t); however, the
information of that is achieved only when the next value falls
out from the line more than error bound ± . Thus, in this method
only one sending period is needed for each linear section and
thus the amount of the sending periods is only half compared to
most other linear regression based methods and LTC method. In
basic form of linear regression-based methods and also in LTC
method, there is a needed to send starting point value with time
stamp and end point value with time stamp for each linear
section.

In Fig. 5. the comparison of M-LRbTC and RT-LRbTC
shows the difference between these algorithms. Both algorithms
use N = 3 values to calculate (time stamps 1,2 and 3) the
regression line at time stamp 3, thus at the beginning both
algorithms get the same line (a1,b1). M-LRbTC sends the

regression line starting value (line value c1 at time 1 = t1) to the
sink at time stamp 3. RT-LRbTC sends the line parameters with
the starting point of the line (a1,b1, 1), where the 1 = t1 to the
sink at time stamp 3. At time stamp 11 the measured value falls
out from the regression line. Thus, M-LRbTC sends the
regression line end value (c2, 2), where 2 = t10, and calculates
the new regression line from the measured values at time stamps
11, 12 and 13. M-LRbTC sends the new regression line starting
value c3 and line starting time stamp 3 = t11 at time moment 13
when the new line is calculated. At time stamp 11, RT-LRbTC
calculates the new regression line from the values at time stamps
9, 10 and 11. When the receiver gets the new line parameters
(a2,b2, 2), where 2 = t11 it knows that the previous line ended at
time 2 – t = t10.

Fig. 5. Comparison of M-LRbTC and RT-LRbTC.

B. Compression efficiency of RT-LRbTC to compress
environmental data
RT-LRbTC algorithm’s compression efficiency was tested

with the same data sets as the authors have used in [2] and with
similar newer data sets. The Naruska measurement station data
sets from 2018 and 2019 were achieved from the Finnish
Meterological Institute’s open data service [14]. The data sets
used were temperature, air pressure and wind speed from the
whole years 2018 and 2019 with a 10-minute measurement
interval. For each magnitude there were 51,961 values in year
2018 data set and 52,463 values in year 2019 data set. The
compression algorithm’s ability to compress those data sets was
tested with different error bounds from 0.1 to 2.0. RT-LRbTC
method was compared to the original M-LRbTC method, which
is presented and tested in [2], and LTC method which has been
the best algorithm in [2] when comparing the compression
ratios. The algorithms have been programmed in MATLAB. M-
LRbTC, and LTC algorithms are exactly the same algorithms as
in [2]. RT-LRbTC is a modification of M-LRbTC algorithm. M-
LRbTC and RT-LRbTC used three values to calculate the
regression line.

M-LRbTC method sends the starting point and ending point
of each linear regression line segment. In RT-LRbTC only the
line parameters and the time stamp for the line starting point are
sent, thus the transmitting periods needed are reduced to half
compared to the original method. In M-LRbTC method the two
values (value and time) are sent twice for each linear segment
compared to three values (line parameters a and b and time)
needed to send once for each linear section in RT-LRbTC.

The compression ratio (CR) is calculated by dividing the
amount of original data by the amount of compressed data.

1. Get first N values and
calculate the regression

line.

6. Send and store the
regression line

parameters and send the
starting point time stamp

7. Get next
measured value

and compare it to
the regression line

8. Is the
difference

smaller than
error bound?

9. Calculate the
new regerssion line

from the lastN
values yesno

10. Send and store the
new regression line

parameters and the time
stamp of the last

measured value used to
calcultate regression line

2. Compare the
regression line and the

values used to
calculate the line.

3. Is the
difference

smaller
than error

bound?

4. Send the first
two data

points and get the
next two

measured values

5. Calculate the
regression line
from the lastN

values

no

yes

The results for the temperature data can be seen in Fig. 6.
The results are very similar for both data sets (2018 and 2019).
The LTC is superior compared to the other two algorithms. RT-
LRbTC benefits from the fact that there is only needed to send
parameters once for each regression line. Actually, there are
more regression lines needed in RT-LRbTC and in that way it is
less efficient compared to M-LRbTC.

Fig. 6. Comparison on the algorithms with temperature data.

Similar comparison in compression ratios was done with air
pressure data sets. The results for 2018 and 2019 data sets can
be seen in Fig. 7.

Fig. 7. Comparison of the algorithms with air pressure data.

LTC algorithm is again superior compared to the other two
and the compression ratios are generally remarkably higher than

with temperature data. This is an indication that air pressure data
in general is changing quite slowly and behaves quasi linearly.
The error bounds with temperature data are not fully comparable
because temperature is in Celsius degrees and air pressure in
hectopascals (hPa).

Fig. 8. Illustrates the comparison between algorithms to
compress the wind speed data. The wind speed data is measured
with 10-minute average value [14].

Fig. 8. Comparison of the algorithms with wind speed data.

Even with 10-minute average measurement the wind speed
remains rather long periods in zero; however, on the other hand,
it is also changing rapidly in other moments. Thus, it is not
behaving that linearly and changing as slowly as the temperature
and air pressure. The results in compression ratios are quite close
compared to the temperature data. That is because of the rather
long periods with consecutive measurements with zero value for
wind speed.

IV. RESULTS
The results of compression ratios comparison for LTC and

M-LRbTC are similar as in [2] also for 2019 data. RT-LRbTC
suffers from the amount of the regression line calculations but
benefits more from the fact that only one transmitting period is
needed for each regression line compared with the two
transmitting periods with M-LRbTC.

 TABLE I presents the results as compression ratios when the
error bound is 0.5 °C for temperature, 0.5 hPa for air pressure
data and 0.5 m/s for wind speed data. These are realistic error
bounds which could be used in real application. It can be seen
that the compression ratios are similar for both data sets (2018
and 2019) for each algorithm and each magnitude in
comparison. Anyway, the compression ratios are slightly higher
for 2019 data except M-LRbTC for air pressure data. The
average change is the absolute average change between two
consecutive values in the whole data set for given magnitude.
For temperature data and wind speed data the average change is

slightly smaller for 2019 data and it can indicate that the data is
behaving slightly more linearly and thus resulting in a better
compression ratio.

TABLE I. COMPARISON OF COMPRESSION RATIOS

Data set
Average
change

Compression Algorithms’ Compression
Ratios

LTC M-LRbTC RT-LRbTC
Temperature 2018 0.223 9.49 3.90 5.65

Temperature 2019 0.208 10.17 4.02 5.96

Air pressure 2018 0,086 28.22 8.94 14.09

Air pressure 2019 0,086 29.56 8.84 14.99

Wind speed 2018 0,302 5.09 2.62 3.68

Wind speed 2019 0,284 5.54 2.74 3.87

TABLE II presents the comparison of the latencies in different
phases of the algorithm operation. Only the algorithm’s inherent
latency is taken into account, not the latency from the
computational delay or from the data transmission. Only M-
LRbTC (2) and RT-LRbTC algorithms can present a predictable
latency. RT-LRbTC presents the shortest latency in operation
and it is dependent on the measurement interval.

TABLE II. COMPARISON OF LATENCIES

Latency
Compression Algorithm

LTC M-LRbTC
(1)

M-LRbTC
(2) RT-LRbTC

At the
beginning

0 (N -1) x t (N -1) x t (N -1) x t

In linear
section

length of the
linear section

length of
the linear
section

t t

Calculating
new line not applicable N x t N x t t

M-LRbTC (1): The linear regression line start point and end
point values are sent.

M-LRbTC (2): The linear regression line parameters are sent
with the starting time stamp.

V. CONCLUSIONS
Different versions of linearity-based sensor data

compression algorithms were presented and tested in this paper.
The main focus was on compression ratio and the inherent
latency from the algorithm itself. Many linearity-based
compression algorithms presented in the field of research are
model based methods demanding a set of data already available
to be implemented. Those methods are not well suited for
analyzing the sensor data stream in on-line mode if there are
requirements for the latency.

The presented and tested methods can be used in on-line
mode for the sensor data stream; however, only the new
variation RT-LRbTC can represent rather short and fixed
latency. Its general compression efficiency is rather low with the
tested data sets, but it benefits from the fact that only one
transmitting period is needed for each linear segment. The
wireless transmission is known to be the most energy consuming
operation in wireless sensor nodes. The linearity-based methods

presented benefits from the fact that environmental magnitudes
behave rather linearly in a short time window.

The next step will be to implement these linearity-based
methods in an embedded edge device such as a wireless sensor
node and test the methods in on-line mode for the data stream.
The actual effect on energy consumption will be tested and
measured and the computational complexity of different
methods will be taken into account and analyzed in detail.

REFERENCES
[1] N. Q. V. Hung, H. Jeung and K. Aberer, "An Evaluation of Model-Based

Approaches to Sensor Data Compression," in IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 11, pp. 2434-2447, Nov.
2013. doi: 10.1109/TKDE.2012.237

[2] O. Väänänen and T. Hämäläinen, “Compression methods for
microclimate data based on linear approximation of sensor data,” in
NEW2AN 2019: Internet of Things, Smart Spaces, and Next Generation
Networks and Systems: Proceedings of the 19th International Conference
on Next Generation Wired/Wireless Networking, and 12th Conference on
Internet of Things and Smart Spaces, LNCS, 11660. Cham: Springer, 28-
40. doi: 10.1007/978-3-030-30859-9_3

[3] O. Väänänen and T. Hämäläinen, “Requirements for energy efficient edge
computing: a survey,” in: Galinina, O., Andreev, S., Balandin, S.,
Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118,
pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01168-0_1

[4] A. K. M. Al-Qurabat and A. K. Idrees, “Two level data aggregation
protocol for prolonging lifetime of periodic sensor network,” in Wireless
Networks (2019) 25: 3623-3641. https://doi-org/10.1007/s11276-019-
01957-0

[5] A. Makhoul, H. Harb and D. Laiymani, “Residual energy-based adaptive
data collection approach for periodic sensor networks,” in Ad Hoc
Networks, Volume 35, 2015, Pages 149-160, ISSN 1570-8705,
https://doi.org/10.1016/j.adhoc.2015.08.009.

[6] A. Mahbub, F. Haque, H. Bashar and M. R. Huq, "Improved Piecewise
Constant Approximation Method for Compressing Data Streams," 2019
1st International Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, pp. 1-6.
doi: 10.1109/ICASERT.2019.8934460

[7] E. Keogh, K. Chakrabarti, S. Mehrotra & M. Pazzani, “Locally adaptive
dimensionality reduction for indexing large time series databases,” in
Sigmod Record, 30(2), 2001, pp. 151-162.

[8] C. Buragohain, N. Shrivastava and S. Suri, "Space Efficient Streaming
Algorithms for the Maximum Error Histogram," 2007 IEEE 23rd
International Conference on Data Engineering, Istanbul, 2007, pp. 1026-
1035. doi: 10.1109/ICDE.2007.368961

[9] C. Wang, C. Yen, W. Yang and J. Wang, "Tree-Structured Linear
Approximation for Data Compression over WSNs," 2016 International
Conference on Distributed Computing in Sensor Systems (DCOSS),
Washington, DC, 2016, pp. 43-51. doi: 10.1109/DCOSS.2016.37

[10] C. C. Aggarwal, Managing and Mining Sensor Data. Springer. 2013. Doi:
10.1007/978-1-4614-6309-2

[11] I. Lazaridis and S. Mehrotra: Capturing Sensor-Generated Time Series
with Quality Guarantees. In: Proc. Int’l Conf. Data Eng. (ICDE), 2003,
pp. 429-440.

[12] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D.
Estrin, "Lightweight temporal compression of microclimate datasets
[wireless sensor networks]," 29th Annual IEEE International Conference
on Local Computer Networks, Tampa, FL, USA, 2004, pp. 516-524.
doi: 10.1109/LCN.2004.72

[13] G. Giorgi, “A Combined Approach for Real-Time Data Compression in
Wireless Body Sensor Networks,” in IEEE Sensors Journal, vol. 17, no.
18, pp. 6129-6135, 15 Sept.15, 2017.

[14] Finnish Meteorological Institute’s open data–service.
https://en.ilmatieteenlaitos.fi/opendata

VI

LORA-BASED SENSOR NODE ENERGY CONSUMPTION
WITH DATA COMPRESSION

by

Olli Väänänen & Timo Hämäläinen, 2021

Proceedings of the 2021 IEEE International Workshop on Metrology for Industry
4.0 & IoT (MetroInd4.0&IoT)

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434

Reproduced with kind permission by IEEE.

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434

LoRa-Based Sensor Node Energy Consumption
with Data Compression

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

0000-0002-7211-7668

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

0000-0002-4168-9102

Abstract—In this paper simple temporal compression
algorithms’ efficiency to reduce LoRa-based sensor node energy
consumption has been evaluated and measured. It is known that
radio transmission is the most energy consuming operation in a
wireless sensor node. In this paper three lightweight
compression algorithms are implemented in an embedded LoRa
platform to compress sensor data in on-line mode and the
overall energy consumption is measured. Energy consumption
is compared to the situation without implementing any
compression algorithm. The results show that a simple
compression algorithm is an effective method to improve the
battery powered sensor node lifetime. Despite the radio
transmission’s high energy consumption, the sleep current
consumption is a significant factor for the device overall lifetime
if the measurement interval is long.

Keywords—Internet of Things, edge computing, sensor data,
compression, energy efficiency

I. INTRODUCTION
It is known that the most significant single energy

consumer of wireless sensor node is the radio transmitter. A
well-known method to reduce wireless sensor node energy
consumption is to compress the data and thus reduce the radio
transmitting periods. In this paper, three simple temporal
compression algorithms are implemented in a LoRa-based
sensor node, and the overall energy consumption is measured.
The effect of the compression algorithm in battery lifetime has
been evaluated. In this paper it has been demonstrated that if
the measurement interval is rather long, then the most
effective method to lengthen the battery lifetime is to
minimize the sensor node sleep current consumption between
the measurement and transmission periods. Minimizing the
sleep current also improves the effectivity of the powerful
compression algorithm to lengthen battery lifetime. Thus, the
combination of very low sleep current consumption together
with light temporal compression algorithm has been
demonstrated to be an effective method to lengthen the battery
lifetime of the LoRa sensor node. This kind of application
could be useful for example in agricultural applications for
measuring some environmental magnitudes. In different smart
farming applications typical measured magnitudes are for
example temperature and humidity. These magnitudes behave
rather linearly, and thus the measurement interval can be
rather long. In agricultural applications the sensor nodes are
often located in the fields, thus requiring wireless transmission
and a battery powered supply. Suitable applications could be
also different smart city applications. Temporal compression
algorithms used in this research are very effective for linearly
behaving data.

II. RELATED WORK
There are some research papers about the energy

consumption of wireless sensor nodes. In [1], many myths
related to energy models of wireless sensor networks have
been busted. For example, it is generally known that the radio
transmission (sending data packets) is the most energy
consuming operation, but actually keeping the radio in idle
mode listening is in total a more consuming operation. This is
because the transmitting and receiving last a very short time
compared to the time that the radio is listening for incoming
packets. It is also demonstrated that generic energy models do
not fit for all devices even if the devices use a similar
technology [1]. Thus, measurements need to be made to gain
reliable results for certain devices used. The energy
consumption models and battery lifetime experiments of
different wireless sensor node technologies are published for
example in [2][3].

LoRa technology has been developed to be used in the
Internet of Things applications. LoRa is a low-energy wide
area network especially suitable for transmitting sensor data.
There are several published research papers regarding energy
consumption modelling for LoRa based sensor nodes, such as
[4][5][6][7]. In [8] the energy consumption of different
wireless sensor network technologies is compared. Papers
have demonstrated that LoRa and SIGFOX offer the best
lifetime for low intensity traffic. It is also demonstrated that
the sleep power consumption is a significant factor for the
device lifetime if the transmission period frequency is low [8].

In [6] the effect of LoRa parameters on the LoRa node
energy consumption has been researched and measured.
Higher spreading factor (SF) increases the time on air and thus
increases the power consumption of transmission. But to
achieve long range, high SF value needs to be used. In fact,
the overall LoRa transmission energy consumption is
dependent on different LoRa/LoRaWAN parameters such as
spreading factor, coding rate, payload size, and bandwidth [6].

One well known method to reduce wireless sensor node
energy consumption is to use data compression. Temporal
lossy compression algorithms are often light and simple. If the
wireless transmission periods could be reduced using data
compression, it would reduce the overall energy consumption
as the radio could be a longer time period on sleep mode.

For example, with LoRaWAN Class A the device is not
listening to downlink messages except after uplink
transmission for two short downlink windows. Thus, it can
remain in sleep mode until the data needs to be transmitted [9].

Thus, there are many research papers dealing with LoRa
device energy consumption and other papers dealing with
compression algorithms efficiency to reduce energy
consumption. But not many experiments have been published
on how the simple compression algorithm can reduce LoRa-
sensor node energy consumption and thus lengthen the battery
lifetime. In this paper the effectiveness of simple temporal
compression algorithms to reduce overall energy consumption
of the LoRa sensor node is evaluated and measured.

III. TEMPORAL COMPRESSION METHODS FOR SENSOR
DATA

Compression algorithms implemented and tested in this
paper are simple temporal compression methods based on data
linearity. Many environmental magnitudes behave rather
linearly, and simple linearity-based algorithms utilize that
behavior. The methods are very simple, easy to understand
and easy to implement in an embedded platform. IoT wireless
sensor nodes are often computationally constrained, and thus
simple and light compression algorithms suit these devices
well. Wireless sensor nodes are also often battery powered or
even harvesting the energy from the environment. Thus,
minimizing the energy consumption is important for
lengthening the device lifetime.

The implemented algorithms are Lightweight Temporal
Compression (LTC) and Real-Time Linear Regression based
Temporal Compression (RT-LRbTC). LTC is originally
presented in [10]. RT-LRbTC is a modification of other linear
regression-based compression algorithms, and it is originally
presented by the authors of this paper in [11]. These
algorithms are lossy methods meaning that reconstructed data
after compression is not exactly the same as the original data.
The maximum reconstruction error is determined by the error
bound (ε) used.

A. Lightweight Temporal Compression
Lightweight Temporal Compression (LTC) is a well-

known temporal compression method. It was first presented in
2004 in [10], and several modifications on that algorithm have
been presented since then. It has proved to be a very effective
compression algorithm, especially for environmental
magnitudes [12]. As a disadvantage, the LTC has
unpredictable latency, and thus it is not well suited for real-
time or near real-time applications [13]. In this paper the LTC
is used as it is in its original version and transformed and
implemented for embedded Arduino board from MATLAB
version used in [11] and [12]. The LTC algorithm itself is
computationally very light. With every new measured value,
comparisons need to be made between the new value with
error bound extremes to the previously calculated upper and
lower limit lines. As a result of the comparisons in maximum
two new lines are calculated. Calculating line parameters
(slope and y-intercept) requires one division, one
multiplication, one summation and subtractions. Thus, the
compression algorithm is computationally very light.

B. Real-Time Linear Regression based Temporal
Compression
Real-Time Linear Regression based Temporal

Compression (RT-LRbTC) is also a very simple temporal
compression algorithm. It is a modification from other linear
regression-based algorithms, and it is developed especially for
compressing the on-line sensor data stream. The algorithm’s
suitability for compressing on-line data stream is based on

minimizing the algorithm’s inherent latency. In general, this
algorithm’s inherent latency is one measurement interval (Δt)
long. The basic form of the algorithm uses 3 previous data
values (N = 3) to calculate the regression line and uses it to
predict future values with certain error bound. The algorithm
is explained in detail in [11]. For every new measured value
its value needs to be compared to the previously calculated
regression line value in that time stamp. If the difference
between the new value and regression line is more than error
bound, then a new regression line is calculated. Calculating
the regression line requires the sum of N times xk, xk

2, yk, xkyk,
and the square of the sum of xk. xk is the time stamp and yk is
the measured value. In this paper also N = 4 version is tested
to see if calculating regression line with 4 values has any effect
on the complexity and energy consumption of the
compression algorithm calculation. The implemented version
is derived to Arduino from MATLAB version used in [11].

IV. ENERGY CONSUMPTION OF IMPLEMENTED COMPRESSION
METHODS WITH LORA CONNECTION

Embedded LoRa-based sensor node used in this
experiment was Arduino MKR WAN 1310 board. It has a
Microchip SAM D21 32-bit Arm Cortex-M0+ based low
power microcontroller and Murata CMWX1ZZABZ LoRa
module. It also has a crypto chip ATECC508 by Microchip
[14]. Arduino boards are widely used by hobbyists but also in
research and in the industry due to their simplicity and ease of
use.

DHT22 sensor was used to measure temperature. DHT22
is a low-cost temperature and humidity sensor with a digital
output [15]. It is widely used by hobbyists for its low cost, and
there are many project examples available on the internet
where DHT22 sensor is used. There are also support libraries
available for most used embedded development boards. The
sensor has measurement resolution 0.1 Celsius degrees for
temperature, and its accuracy is <±0.5 Celsius degrees for
temperature measurement [15].

Arduino MKR WAN 1310 was powered by Lithium-
Polymer (Li-Po) battery. The Li-Po battery used had 2 000
mAh capacity with 3.7 V nominal voltage. Thus, its energy
capacity was 7.4 Wh which is 26 640 Ws. The Arduino board
supports Li-Po battery with JST-PH connector, and it has a
built-in battery charger. Arduino board can also be powered
from the USB port, but the energy consumption is lower if
powered from the battery.

A. Measurement Setup
The compression algorithms implemented were set to

measure the temperature with DHT22 sensor at regular
intervals. The embedded board was set to go to deep sleep
mode between the measurements. After every measurement
the algorithm compressed the data, and the compressed data
was stored and sent via LoRa network if needed. The LoRa
network used was a commercial network in Finland.

The board’s current consumption was measured with
oscilloscope current probe from the battery plus-wire, except
that the deep sleep current consumption was measured with a
digital multimeter (DMM), which was set in series with the
battery. The other possibility would be to use a so called shunt
resistor in series with the battery and measure the voltage over
the resistor with oscilloscope voltage probe. The current probe
was chosen to be used because of its simplicity and ease of use

even though its accuracy is not very good when measuring
very low-level current values.

The measurement devices used were Tektronix MSO 4104
Mixed Signal Oscilloscope with 1 GHz measurement
bandwidth, and the probes used were Tektronix TCP0030
Current Probe and TAP1500 Active Voltage Probe. The
current probe has 1 mA sensitivity and 1 % DC accuracy [16].
The DMM used was Tenma RS232C TrueRMS model.

B. Deep Sleep Current Consumption
Deep Sleep current consumption was measured with the

algorithms implemented on the board. The board was set to
deep sleep mode between measurements. The DMM was set
in series with battery wire. The measured deep sleep current
was not dependent on the algorithm used, as the measurement
result was the same with every algorithm tested and also
without compression algorithm implemented. The measured
deep sleep current was 116 µA – 117 µA. After the
measurement instant and possibly LoRa-transmission, when
the Arduino board went to deep sleep mode, the current
dropped down immediately to 150 µA - 160 µA level, and
continued going down quickly to 120 – 130 µA level and then
more slowly to stabilize to 116 µA – 117 µA level. It took
about 20 seconds to gain the 117 µA level. The battery voltage
was measured at the same time with the oscilloscope’s voltage
probe connected to the board’s battery connection. The battery
voltage was 3.99 V while measuring the deep sleep current.
Thus, the power consumption in deep sleep mode was: Pds =
Ubatt x Ids = 3.99 V x 117·10-6 A = 4.6683·10-4 W = 0.46683
mW.

The 117 µA current consumption in deep sleep mode is
not very low for a modern microcontroller development
board, and with some other boards it could be possible to
achieve lower levels.

C. Sensor Measurement and Algorithm Current
Consumption
On a regular basis the embedded board wakes up from the

deep sleep mode and makes the measurement. The real-time
clock (RTC) is running even when the board is in deep sleep
mode, and it wakes up the board. After the wake up, the board
measures the temperature from DHT22 sensor and applies the
compression algorithm implemented. As a result of algorithm
calculations, the board either sends the compressed value via
LoRa-connection or falls into deep sleep mode to wait for the
next measurement period.

The current/energy consumption during sensor
measurement and compression algorithm period was
measured with oscilloscope current probe, and oscilloscope
automatic measurement functions were used to show the mean
values. The battery voltage was measured at the same time
with voltage probe, and the oscilloscope MATH-function was
used to multiply the measured values to get the power value.
The oscilloscope measurement function “area” was used to
calculate the power graph area to get the energy consumption.
In Fig. 1. one measurement result can be seen. The deep sleep
energy consumption with the same oscilloscope settings was
also measured to be subtracted from the measurement period
result. Thus, only sensor measurement and algorithm
calculation period consumption were achieved. The sensor
measurement, data compression and board shut down to deep
sleep takes about 60 ms time (the high pulse in Fig. 1.). After
the measurement and algorithm calculations, the current

consumption did not go directly to the deep sleep level but
remained slightly higher for 390 ms due to DHT22 sensor.

Fig. 1. RT-LRbTC: sensor measurement and algorithm period.

The oscilloscope measurement settings were: current
probe 5 mA/div, voltage probe 1 V/div and horizontal scale
100 ms/div. Each measurement was repeated ten times, and
the average values of the measurements were used for better
measurement reliability. The measurement results can be seen
in TABLE I. Each value in TABLE I is an average value of
the ten separated measurements in one second measurement
window (oscilloscope screen scale 100ms/div = total 1
second, as seen in Fig. 1.).

TABLE I. SENSOR MEASUREMENT AND ALGORITHM MEASUREMENT
RESULTS

The last line of TABLE I shows the results for the energy
consumed for sensor measurement and algorithm calculations
for each algorithm and also without any compression
algorithm for comparison. The result is achieved by
subtracting the deep sleep energy value (second last row) from
energy value (third last row). It can be seen from the results
that the values are on the same level for each algorithm and
even without compression algorithm implemented, this means
that the algorithm calculations do not affect at all the board’s
energy consumption, or the effect is so small that it is not
possible to recognize it with this measurement setup. As can
be seen from the results, there is no significant difference
between the algorithms. The results between the algorithms
and without an algorithm are within measurement uncertainty.
The measured differences are negligible.

 No
compression LTC

RT-
LRbTC,
N=3

RT-
LRbTC,
N=4

Current (mA) 1.3977 1.4247 1.4016 1.4500

Battery voltage
(V)

3.9949 3.9925 3.9906 3.9963

Power (mW) 5.5802 5.6836 5.6208 5.7814

Energy (mWs) 5.5775 5.6836 5.6208 5.7814

Deep sleep
energy (mWs)

1.0003 0.9013 0.8428 0.9492

Measurement +
algorithm
(mWs)

4.5772 4.7823 4.7780 4.8322

D. LoRa Transmission Energy Consumption
LoRa node used the spreading factor SF10 for

transmitting, and the network sent the confirmation with SF9
or SF12. During the whole testing period the network
confirmation was sent with SF9 for 49.2 % of all occasions
and with SF12 for 50.8 % for all occasions. TABLE II shows
the energy consumption measurement results when LoRa
node is sending the data packets with SF10, and the network
sends the confirmation with SF9. In TABLE III are the results
when the data up is with SF10 and data down with SF12.
Every measurement is repeated ten times, and the results are
the average values of the measurements. In Fig. 2. one result
for the SF10 uplink and SF9 downlink situation can be seen.
It seems that the LoRa sensor node is not receiving the
confirmation from the network even though the network has
sent the confirmation. Two 10 mA pulses, the first
approximately one second after the transmit, and the second
one two seconds after transmit are the two receive windows
that follow the uplink. Because the downlink is not received
during the first window, then the second receive window
opens two seconds after the transmit. In Fig. 3. there is the
result of SF10 uplink, SF12 downlink situation. In this case it
seems that the LoRa node has received the downlink
confirmation because the receive window is rather long and
not followed by the second receive window.

In TABLE II and TABLE III, the last row transmission
energy is calculated by subtracting the deep sleep energy and
previously measured sensor measurement and algorithm
energy consumptions (TABLE I) from the measured
transmission energy value (third last row in TABLE II and
III). The deep sleep energy was measured with the same setup
and measurement equipment settings while the LoRa-sensor
node was in deep sleep mode. In Fig. 2. and Fig 3. the current
measurement with the current probe is the blue line (probe 1),
battery voltage is the light blue line (probe 2), and power is
the red M-line which is voltage multiplied with current. The
results in Fig. 3. include the sensor measurement and
algorithm calculations, but Fig. 2. includes only the sensor
measurement as the compression algorithm was not
implemented in this case. The transmission period is
approximately 400 ms long, and it is followed by the network
confirmation time window one second after the transmission.

As can be seen in the transmission energy values (last row
in TABLE II and TABLE III) there is not a big difference
between the algorithms and taking into account the
measurement uncertainty of low current values measured with
current probe, the differences are negligible. The results with
no compression algorithm implemented are even higher than
with LTC algorithm. The results of LTC algorithm
compression are the temperature value (float number) and
time stamp (which is only a sequence number, integer), thus
the transmitted data is 8 bytes. With RT-LRbTC algorithms
the regression line parameters (slope and base, both float
numbers) with time stamp (sequence number, integer) are sent
in total 12 bytes. Thus, the amount of data sent is bigger with
RT-LRbTC algorithms, and thus this could explain a slightly
higher energy consumption in the transmission. In general,
these results can be regarded to be approximately the same for
each algorithm. The differences are negligible and can be
explained by measurement uncertainty.

TABLE II. UPLINK SF10, DOWNLINK SF9

 No
Compression LTC

RT-
LRbTC,
N=3

RT-
LRbTC,
N=4

Current (mA) 4.9736 4.7976 5.1049 5.2293
Battery
voltage (V)

3.9928 3.9924 3.9887 3.9897

Power (mW) 19.842 19.143 20.323 20.652

Energy
(mWs)

79.372 76.565 81.289 82.605

Deep sleep
energy (mWs)

3.5636 4.0993 4.971 4.632

Transmitting
(mWs)

71.2312 67.6834 71.54 73.1408

TABLE III. UPLINK SF10, DOWNLINK SF12

 No
Compression LTC

RT-
LRbTC,
N=3

RT-
LRbTC,
N=4

Current (mA) 7.4714 7.3759 7.7266 7.598
Battery
voltage (V)

3.9919 3.9918 3.9879 3.9851

Power (mW) 29.807 29.425 30.791 30.061

Energy
(mWs)

119.21 117.68 123.15 120.26

Deep sleep
energy (mWs)

3.5636 4.0993 4.971 4.632

Transmitting
(mWs)

111.0692 108.7984 113.401 110.7958

The oscilloscope settings were 10 mA/div for current
probe, 1 V/div for voltage probe, and the horizontal scale was
400 ms/div. The values were measured using oscilloscope
mean value measurement function from the oscilloscope
screen area which was 4 seconds in total. The settings can be
seen in Fig. 2. and Fig. 3.

Fig. 2. Measurement and LoRa transmission period with SF10 uplink and
SF9 downlink. No compression algorithm implemented

Fig. 3. RT-LRbTC (N=3). Measurement, algorithm and LoRa transmission
period with SF10 uplink and SF12 downlink

V. OVERALL ENERGY CONSUMPTION AND BATTERY
LIFETIME

The overall energy consumption of the LoRa sensor node
with the compression algorithm implemented is combined
from the measurement event and algorithm consumption
(WM), which happens on a regular basis (measurement interval
Δt), the LoRa transmission event consumption (WS) which
frequency of occurrence depends on the measurement interval
(Δt), and the compression ratio (CR). The overall time is tx.
Between the measurement events the device is in deep sleep
mode and its power consumption is Pds. The total energy
consumption (WTOT) can be calculated approximately by (1):

(1)

Where Pdstx is the energy that the device uses in deep sleep
mode during the whole time tx. This value includes the
measurement and transmission periods as well as the deep
sleep values were subtracted from the other energy values in
TABLEs I-III. tx/Δt is the number of the measurement periods.
tx/(CR x Δt) is the number of transmission periods.

As the DHT22 temperature sensor has the accuracy of ±0.5
Celsius degrees, it is reasonable to use error bound value ε =
0.5 Celsius degrees for compression algorithms as an
example. In [11] the LTC and RT-LRbTC (N = 3) have
achieved the compression ratios CR = 9.5-10.2 (LTC) and CR
= 5.5-6.0 (RT-LRbTC) for real temperature data with a 10-
minute measurement interval (Δt), when the error bound used
has been ±0.5 Celsius degrees. RT-LRbTC with N = 4 has not
been tested with available temperature data set. The
temperature data sets used in [11] were real temperature data
sets achieved from Finnish Meteorological Institute’s open
data service. The data sets were Salla Naruska measurement
station data from whole years 2018 and 2019. The temperature
data used was measured and presented with 0.1 Celsius
degrees resolution.

As an example, the 2 000 mAh battery lifetime can be
calculated with 10-minute measurement intervals and with
measurement results from TABLEs I, II and III. The equation
(1) solved for overall time tx is (2):

(2)

With a 10-minute measurement interval, the Δt = 600 s.
The 2 000 mAh Li-Po battery total energy is WTOT = 7.4 Wh =
26 640 Ws. This amount of available energy was used even
though it is a rather optimistic estimation. For example, if the
battery powered sensor node is located outside, the
temperature can be as low as -30 Celsius degrees in Finland.
It is well known that the capacity of lithium-based batteries
can drop significantly in cold conditions.

The battery lifetime without any compression algorithm
can be estimated by using CR = 1 value. For other parameters
the no compression measurement values from TABLEs I-III
can be used. The values used (no compression): Pds = 0.46683
mW, WM = 4.5772 mWs, WS = 91.4689 mWs. The WS value is
calculated from TABLE II and TABLE III values by taking
into account that 49.2 % of transmitting periods were SF10,
SF9 events and 50.8 % were SF10, SF12 events. The
estimated battery lifetime without any compression algorithm
used by equation (2) is: 42 494 353 s = 491.8 days

The battery lifetime with LTC algorithm implemented was
calculated with compression ratio CR = 10. Thus, overall
battery lifetime with LTC algorithm if the whole battery
capacity can be used is: 54 415 973 s = 629.8 days. The battery
lifetime is 28.1 % longer than without compression.

In TABLE IV are the results for all tested algorithms with
their measured energy consumption values. The compression
ratio used for RT-LRbTC algorithms was CR = 6.

TABLE IV. BATTERY LIFETIME WITH DIFFERENT ALGORITHMS

 No
Compression LTC

RT-
LRbTC,
N=3

RT-
LRbTC,
N=4

CR 1 10 6 6
Battery lifetime
(days)

491.8 629.8 615.9 616.0

With RT-LRbTC algorithms the battery lifetime is
lengthened by 124.2 days, which is 25.2 % longer lifetime
than without any compression.

The deep sleep energy consumption and measurement
intervals are very significant parameters for the LoRa-node
lifetime together with the compression ratio. In this example
the measurement interval is rather long as is often the case in
agricultural applications. Thus, the node’s deep sleep energy
consumption determines mostly the battery lifetime. The
Arduino MKR WAN 1310 deep sleep current (measured 117
µA) is not an especially low level for a modern embedded
sensor node. If the deep sleep power consumption could be
reduced by 50 %, then the battery lifetime without any
compression would be 783.6 days, with LTC algorithm
1203.7 days and with RT-LRbTC algorithms 1154 days. Thus,
the LTC algorithm would lengthen the lifetime by 420 days,
which is 53.6 % longer lifetime than without any compression.
The RT-LRbTC algorithms would lengthen the lifetime by
370 days, which is 47.2 % longer than without any
compression.

If a bigger reconstruction error is allowed, then the error
bound can be higher than 0.5 degrees. With bigger error bound

the compression ratio is better thus reducing the overall energy
consumption. In [11] the authors have simulated the same
compression algorithms with real temperature data with 10-
minute measurement interval. For those data sets the
compression ratio has been up to 20 for LTC with 1.0 degrees
error bound and up to 10 for RT-LRbTC algorithm with 1.0
degrees error bound. Fig. 4. presents the 2000 mAh battery
lifetime for LTC and RT-LRbTC (N=3) algorithms with
different error bound values. The CR values for different error
bounds are the same as in [11]. The battery lifetime
lengthening is rather limited if the error bound is increased
from 0.5 degrees to 1.0 degrees. The effect is only about 10
days. Thus, it should be considered if using higher error bound
is worth of having a significantly bigger reconstruction error.

Fig. 4. The effect of error bound on battery lifetime

In general, it is not possible to affect the energy
consumption that the measurement itself consumes and the
LoRa-transmission consumes a lot. LoRa radio can be set to
use certain spreading factor for lower energy consumption,
but it can shorter the range. Thus, the most effective ways to
reduce overall energy consumption in this kind of sensor node
is to choose the low energy consumption embedded platform,
which has very low sleep current consumption and to use an
effective compression algorithm suitable for low power sensor
node. If the measurement interval was shorter, then the data
would behave more linearly, and the linearity-based
compression algorithms would behave more effectively and
result in higher compression ratio. The effect in energy saving
achieved with data compression would be bigger because
there would be more data transmission periods if no
compression algorithm is used, and a higher compression ratio
would result in higher reduction in transmission periods. It
would underline the compression algorithm’s effect on
reducing the sensor node’s overall energy consumption. In
[11] the compression ratio values achieved with LTC and RT-
LRbTC (N=3) for air pressure data with 10-minute
measurement interval were almost CR = 30 (for LTC) and CR
= 15 (for RT-LRbTC) when the error bound was 0.5 hPa.
Thus, it can be estimated that the effect of these compression
methods on overall energy consumption would be bigger if the
air pressure was the measured magnitude.

VI. CONCLUSIONS
In this paper we implemented simple sensor data

compression algorithms on LoRa-based sensor node. The
overall energy consumption was measured with and without
implemented compression algorithm. The measurement
results demonstrated that the tested compression algorithms
are computationally so light that due to calculations they do
not have any effect on embedded device energy consumption.

The overall saving in energy consumption is due to the
reduced amount of radio transmission periods thanks to data
compression. The measurement interval was ten minutes,
which is rather long but can be typical in agricultural
applications measuring some environmental magnitudes. Due
to the long measurement interval, the device’s sleep energy
consumption was proved to be the most significant factor in
the device’s lifetime.

REFERENCES

[1] D. Harrison, D. Burmester, W. Seah, and R. Rayudu, “Busting myths
of energy models for wireless sensor networks,” Electron. Lett., 52:
1412-1414, 2016. https://doi.org/10.1049/el.2016.1591

[2] M. Srbinovska, V. Dimcev and C. Gavrovski, "Energy consumption
estimation of wireless sensor networks in greenhouse crop
production," IEEE EUROCON 2017 -17th International Conference
on Smart Technologies, Ohrid, 2017, pp. 870-875, doi:
10.1109/EUROCON.2017.8011235.

[3] J. Rahmé, N. Fourty, K. Al Agha and A. Van den Bossche, "A
Recursive Battery Model for Nodes Lifetime Estimation in Wireless
Sensor Networks," 2010 IEEE Wireless Communication and
Networking Conference, Sydney, NSW, Australia, 2010, pp. 1-6, doi:
10.1109/WCNC.2010.5506424.

[4] N. Madiyar, and K. Nurzhigit, “Prediction of energy consumption for
LoRa based wireless sensors network,” Wireless Networks, 26(5), pp.
3507-3520, 2020. doi:10.1007/s11276-020-02276-5

[5] T. Bouguera, J. Diouris, J. Chaillout and G. Andrieux, "Energy
consumption modeling for communicating sensors using LoRa
technology," 2018 IEEE Conference on Antenna Measurements &
Applications (CAMA), Vasteras, 2018, pp. 1-4, doi:
10.1109/CAMA.2018.8530593.

[6] T. Bouguera, J. Diouris, J. Chaillout, R. Jaouadi, and G. Andrieux,
“Energy Consumption Model for Sensor Nodes Based on LoRa and
LoRaWAN,” Sensors (Basel, Switzerland), 18(7), p. 2104, 2018,
doi:10.3390/s18072104

[7] L. Casals, R. Vidal, and C. Gomez, “Modeling the Energy Performance
of LoRaWAN,” Sensors, 17(10), p. 2364. 2017,
doi:10.3390/s17102364

[8] É. Morin, M. Maman, R. Guizzetti and A. Duda, "Comparison of the
Device Lifetime in Wireless Networks for the Internet of Things,"
in IEEE Access, vol. 5, pp. 7097-7114, 2017, doi:
10.1109/ACCESS.2017.2688279.

[9] About LoRaWAN. https://lora-alliance.org/about-lorawan/
[10] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D.

Estrin, "Lightweight temporal compression of microclimate datasets
[wireless sensor networks]," 29th Annual IEEE International
Conference on Local Computer Networks, Tampa, FL, USA, 2004, pp.
516-524, doi: 10.1109/LCN.2004.72.

[11] O. Väänänen, and T. Hämäläinen, "Sensor Data Stream on-line
Compression with Linearity-based Methods," 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), Bologna, Italy,
2020, pp. 220-225, doi: 10.1109/SMARTCOMP50058.2020.00049.

[12] O. Väänänen and T. Hämäläinen, “Compression Methods for
Microclimate Data Based on Linear Approximation of Sensor Data”
The 19th International Conference on Next Generation Wired/Wireless
Advanced Networks and Systems NEW2AN 2019, August 26 - 28,
2019, St.Petersburg, Russia.

[13] G. Giorgi, "A Combined Approach for Real-Time Data Compression
in Wireless Body Sensor Networks," in IEEE Sensors Journal, vol. 17,
no. 18, pp. 6129-6135, 15 Sept.15, 2017, doi:
10.1109/JSEN.2017.2736249.

[14] Arduino MKR WAN 1310. https://store.arduino.cc/mkr-wan-1310
[15] DHT22 temperature and humidity sensor.

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.p
df

[16] Tektronix TCP0030 Current Probe Instruction Manual.
https://www.tek.com/current-probe-manual/tcp0030

VII

EFFICIENCY OF TEMPORAL SENSOR DATA COMPRESSION

METHODS TO REDUCE LORA-BASED SENSOR NODE
ENERGY CONSUMPTION

by

Olli Väänänen & Timo Hämäläinen, 2022

Sensor Review, vol. 42, no. 5, pp. 503–516, 2022

https://doi.org/10.1108/SR-10-2021-0360

Reproduced with kind permission by Emerald.

https://doi.org/10.1108/SR-10-2021-0360

Efficiency of temporal sensor data compression
methods to reduce LoRa-based sensor node

energy consumption
Olli Väänänen

School of Technology, JAMK University of Applied Sciences, Jyväskylä, Finland, and

Timo Hämäläinen
Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

Abstract
Purpose –Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is
the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the
number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening
the lifetime of a battery-powered wireless sensor node.
Design/methodology/approach – In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The
experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress
sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.
Findings – Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption
significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the
measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for
reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.
Originality/value – This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node
by compressing sensor data in online mode with simple temporal compression algorithms.

Keywords Internet of things, Energy efficiency, Compression, Sensor data, Edge computing

Paper type Research paper

1. Introduction

Sensors are fundamental components of internet of things (IoT)
design. According to a report published in 2021, 40% of IoT
engineers use environmental sensing in their IoT design, and only
14% do not use sensor technology at all in their IoT design
(Farnell, 2021). Typical applications using environmental
sensing are, for example, different home control-related
applications where the sensors are measuring, for instance, air
quality, temperature, humidity and air pressure. Environmental
sensors are also widely used in industrial applications and
particularly in agricultural applications. In agriculture, precision
agriculture (PA) requires up-to-date information from the
environment and from the field for decision-making to improve
quality and production (Jawad et al., 2017).
Most IoT solutions use wireless connections between the

edge device, gateway and cloud. According to the Farnell
report, 77% of the engineers who responded to a survey used a
wireless connection in their IoT design. Only 23% use wired

connectivity (Farnell, 2021). Sensors and wireless sensor
networks (WSNs) are fundamental technologies, for example,
in smart environment monitoring systems. Smart environment
monitoring systems can be used in agriculture for smart
farming and for monitoring air quality, water pollution and
radiation pollution (Ullo and Sinha, 2020).
Globally, there are already more IoT devices than people. It

is estimated that the number of IoT devices will triple from 8.74
billion in 2020 to more than 25.4 billion in 2030 (Farnell,
2021). IoT devices are often battery-powered and will be used
in every area of our lives. Therefore, the energy consumption of
IoT devices is an important issue. By minimizing the energy
consumption, it is possible to lengthen the device or battery
lifetime, thus reducing the overall costs. At the same time, it is a
well-known fact that the wireless connectivity is the single most
energy-consuming task in a wireless IoT sensor node. Themost

The current issue and full text archive of this journal is available onEmerald
Insight at: https://www.emerald.com/insight/0260-2288.htm

Sensor Review
42/5 (2022) 503–516
Emerald Publishing Limited [ISSN 0260-2288]
[DOI 10.1108/SR-10-2021-0360]

© Olli Väänänen and Timo Hämäläinen. Published by Emerald Publishing
Limited. This article is published under the Creative Commons
Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute,
translate and create derivative works of this article (for both commercial
and non-commercial purposes), subject to full attribution to the original
publication and authors. The full terms of this licence may be seen at
http://creativecommons.org/licences/by/4.0/legalcode

Received 14 October 2021
Revised 19 March 2022
Accepted 7 June 2022

503

energy-consumingmodes in wireless sensor nodes are when the
radio is transmitting, receiving or idle mode (Harrison et al.,
2016; Lin et al., 2021). According to Farnell report (Farnell,
2021), Wi-Fi is the most popular type of wireless connectivity
followed by cellular (4G/LTE/5G), Bluetooth low-energy and
LoRa. LoRa is a low-power wide-area network technology that
is well suited for energy-constrained sensor devices located far
from the base station.
In IoT home applications, it is rather easy to power the

devices from the mains power supply, but even these are often
battery-powered for installation simplicity. In many other
sectors, it is not even possible to use the mains power supply to
power the devices. Typical applications where the devices need
to be battery-powered or energy-harvesting powered are, for
example, different agricultural and environmental monitoring
applications where IoT devices can be spread to a
geographically wide area in the field (Prauzek et al., 2018).
There are many methods for reducing the overall energy

consumption of a wireless sensor node. Wireless sensor nodes
consume energy mainly in sensing, processing and data
communication. At other times, it can be in the sleep mode
(Lin et al., 2021). The effective use of sleep modes between
sensor measurements is a significant method for reducing
energy consumption (Väänänen and Hämäläinen, 2021).
Another method to reduce energy consumption in IoT sensor
nodes is to lengthen the sampling interval, thus keeping the
device in sleep mode for longer periods (Lin et al., 2021). This
also reduces the number of transmitting periods with a wireless
connection; thus, it is a very effective way to reduce energy
consumption. Lengthening the sampling interval results in
lower precision in the measured data, as it is not possible to
detect sudden and rapid changes when they occur between
measurements. It is impossible to obtain any information
regarding the measured magnitude changes and the direction
of change betweenmeasurements.
Different sensor data compression methods are one solution

to improve this situation. It is possible to compress the raw
sensor data in the sensor node, thus reducing the amount of
data required to transmit via wireless connection (S�ac�aleanu
et al., 2018). It is also possible to reduce the number of
transmitting periods by using a temporal compression
algorithm, and at the same time, obtain the information if the
measured values change rapidly. Many temporal compression
methods are computationally light and simple. These methods
can be used for IoT devices that are computationally
constrained and have limited energy resources.
In this study, the energy consumption of LoRa sensor node

with different LoRa modulation parameters and temporal
compression algorithms was evaluated with practical
measurements. This study demonstrates that the sleep mode
energy consumption, LoRa modulation parameters and
compression algorithm used have a significant effect on the
overall energy consumption of an IoT sensor node. The
remainder of this paper is organized as follows. The LoRa and
LoRaWAN wireless IoT protocols and their basic parameters
are presented in Section 2. Section 3 presents the basics of
temporal compression algorithms, and the implemented
compression algorithms are presented in more detail. The test
and measurement setup and measurement challenges are
presented in Section 4. The measurement results with different

LoRa parameters and implemented algorithms are discussed in
Section 5. The combined results and overall energy
consumption with different LoRa parameters and algorithm
combinations are presented in detail in Section 6. Finally,
Section 7 concludes the paper.

2. LoRa and LoRaWAN

LoRaWAN is a low-power wide-area (LPWA or LPWAN)
networking protocol developed to be an energy-efficient
wireless protocol to connect battery-powered IoT devices to the
internet (LoRa Alliance, What is LoRaWAN Specification).
LoRaWAN is optimized to extend the battery lifetime, capacity
and range of IoT devices as well as tominimize costs.
Several other wireless technologies are available for use in

IoT devices. Wi-Fi and Bluetooth low energy are widely used
for communication in personal devices, especially for short
distances. Cellular technology is suitable for applications in
which a large amount of data must be transmitted over a long
range. LoRa offers very low power consumption and a long
range for transmitting sensor data a few times per hour (LoRa
Alliance, What is LoRaWAN Specification). Another low-
power and long-range wireless technology is the SIGFOX.
Both LoRa and SIGFOX are asynchronous technologies;
therefore, nodes can be in sleep mode and wake up only when
there is a need to transmit data (Morin et al., 2017). Each
wireless technology has its own characteristics, advantages and
disadvantages. Thus, there is not one single technology suitable
for every application. LoRa is a very potential technology for
sensor devices when the transmitted amount of data is rather
limited and low-energy consumption is required. Commercial
LoRa networks have good geographical coverage. For example,
in Finland, the commercial network is operated by Digita, and
its network covers almost the entire country if a terminal device
is located outdoors (Digita, LoRaWAN network coverage in
Finland). Even for indoor devices, the network covers most of
the country.
LoRa is a physical layer that includes wireless modulation,

enabling long-range connectivity. LoRa uses chirp spread
spectrum (CSS) modulation, which enables low power
consumption and long range in wireless connectivity at the
same time (LoRaAlliance,What is LoRaWANSpecification).
LoRaWAN is a communication protocol and system

architecture that uses the LoRa physical layer to achieve a low-
power operation and a long communication range. LoRaWAN
network uses a star topology in which the nodes are not
associated with a specific gateway/base station. The transmitted
data can be received by several base stations, and the network
side removes redundant packets (Lora Alliance, What is
LoRaWANSpecification).
Three different device classes are described in the LoRaWAN

protocol. The most energy efficient of the three classes is Class
A. The Class A device does not listen to the downlink messages
from the network, except for two short time windows after every
uplink transmission (LoRa Alliance, What is LoRaWAN
Specification). Thus, between the transmitting periods, the
device and LoRa radio can be in sleep mode. In addition to
effective modulation, operation at the sub-GHz level enables a
long communication range. LoRa communication uses an
unlicensed industrial, scientific and medical band (Lavric and

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

504

Popa, 2018). Sub-GHz frequency range helps signal
penetration through the obstacles between the device and base
station. Sub-GHz frequency and LoRa modulation enable the
long range as well as the good network coverage for devices
located indoors.
The CSS modulation spreads the narrowband signal over a

large frequency band, thus enabling the signal to be very
resistant to noise and immune for interference (Lavric and
Popa, 2018). In LoRa CSSmodulation, the spread spectrum is
achieved with a chirp signal that continuously varies its
frequency (Semtech, What are LoRa and LoRaWAN). LoRa
supports spreading factors (SFs) from 6 to 12. The higher SF
allows a longer range, but it also results in higher time on air
(ToA) values and lower data rates (DRs) (Lavric and Popa,
2018; Semtech,What are LoRa andLoRaWAN). For example,
according to Semtech (Semtech, What are LoRa and
LoRaWAN), the range with the upper link SF10 is 8 km, but
with SF7, the range is only 2 km. These values are examples
and vary greatly depending on the circumstances. The ToA is
correspondingly 371ms with SF10 and 61ms with SF7. The
range depends significantly on the terrain, but this provides an
idea of the SF effect on the range.
The LoRa nodes have the possibility of setting theDR from 0

to 6. The DR represents a predefined set of LoRa settings such
as the SF (Lavric and Popa, 2018). The LoRa specification
describes the DR settings as presented in Table 1 (LoRa
Alliance, RP002-1.0.0 LoRaWAN Regional parameters). The
configuration column presents the SF and channel width.
The LoRaWAN protocol defines an adaptive DR (ADR)

mechanism, which optimizes the DR used. LoRa devices
located close to the base station do not require a high link
budget that is with SF12. ADR optimizes the SF used and
minimizes the ToA. The ADR has simple rules for changing the
DR used. If the link budget is high, then the SF can be
increased and vice versa (Semtech, What is an ADR). It is also
possible to set the LoRa node to use a certain DR, but the ADR
is designed to optimize the SF and ToA, and thus, it should be
the recommended setting. The ADR scheme maximizes
the battery lifetime. LoRaWAN also supports optional
acknowledgments (ACK) and message retransmissions. The
LoRaWAN node can indicate whether an ACK is requested in
each transmission. If ACK is required, the node is expecting to
receive ACK (confirmation) in one of the two receive windows
after message transmission. If the ACK is not received, the
LoRaWAN node retransmits the message with the same DR as
originally, and then DR decreases every two attempts to lower
DR until DR = 0 if the ACK is not received. (Casals et al.,
2021). If the ACK is not requested, the LoRaWAN node

listens to the possible downlink message from the network in
any case but does not retransmit the message if the
confirmation is not received. The LoRa network server can
send a downlinkmessage even if it is not requested.

3. Temporal compression methods

Many temporal compression methods are well suited for
sensor-based 1D data. Data compression is a common method
for reducing data size. Compression methods can be divided
into lossless and lossy methods. The compression ratios
achieved are not very high with lossless methods (Lin et al.,
2019). Lossy algorithms can achieve a compression ratio that is
several times higher than that of lossless algorithms, but with
the cost of reconstruction error (Lu et al., 2021). There is often
a temporal correlation in sensor data if the observation window
is short. Temporal compression methods use this temporal
correlation (Lin et al., 2019).
The temporal compression methods used in this study are

simple and computationally lightweight compression
algorithms. The methods used in this study are based on data
linearity. The environmental magnitudes behave rather linearly
if the observation window is short. For example, air
temperature in a shadow does not change significantly in
seconds. It normally requires minutes to observe the
temperature change, even when it is changing at its extreme
speed. If the temperature is rising, it changes quite linearly as it
behaves similarly also if it is going down.
The compression methods used in this study either find

linear segments from the sensor data stream with certain error
bound or use linear regression from previous values to predict
future values with allowing certain error bound. Thus, the
compressed data set loses some information. These methods
are computationally light and thus suitable for constrained
battery-powered IoT sensor nodes. These methods are also
easy to understand and implement.
The compression algorithms used in this paper were

lightweight temporal compression (LTC) and two versions of
the real-time linear regression-based temporal compression
(RT-LRbTC). The two versions of the RT-LRbTC vary from
each other by the number of sensor values used to calculate the
regression line. Three and four values (N values) versions were
tested.

3.1 Lightweight temporal compression
The LTC is a well-known compression algorithm that is
particularly suitable for environmental data. It was first
presented by Schoellhammer et al. (2004). It has also been used
to compress sensor data in wireless body sensor networks
(WBSN) (Giorgi, 2017). Several modifications of the original
LTC have been presented (Parker et al., 2013; Azar et al., 2018;
Sarbishei, 2019; Li et al., 2018; Klus et al., 2021).
LTC has proven to be a very effective compression

algorithm, particularly for linearly behaving environmental
sensor data (Väänänen and Hämäläinen, 2019). One major
disadvantage of LTC is its unpredictable latency. As the LTC
compresses the data in the online mode by finding the best and
longest linear segment from the incoming sensor data, it sends
the linear segment endpoint to the sink only when the algorithm
finds it as the new value falls off from the linear segment. If the

Table 1 LoRaWAN DR settings

DR Configuration Physical bit rate (bit/s)

0 SF12/125 kHz 250
1 SF11/125 kHz 440
2 SF10/125 kHz 980
3 SF9/125 kHz 1,760
4 SF8/125 kHz 3,125
5 SF7/125 kHz 5,470
6 SF7/250 kHz 11,000

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

505

method compresses the data very efficiently, then the
transmitting intervals become long, and the receiving side does
not even know in which direction the values are changing.
Thus, LTC is not well suited for compressing sensor data in
real-time or near-real-time applications (Giorgi, 2017).
In this study, the LTC was used as in its original version

presented by Schoellhammer et al. (2004). The same version
was used by Väänänen and Hämäläinen (2019, 2020) as
MATLAB version. In this study, the LTCwas programmed for
the Arduino and implemented on the Arduino MKR WAN
1310 LoRa board.
The LTC itself is computationally light because with every

new value, it is only necessary to make a comparison between
the new value with error bound extremes and the previously
calculated upper and lower limit lines. As a result of the
comparison, a maximum of two new lines must be calculated to
create new upper and lower limit lines that will be used with the
next value. Calculating the new limit line parameters (slope and
y-intercept) requires one division, one multiplication, one
summation and subtractions, thus resulting in a
computationally simple algorithm.

3.2 Real-time linear regression-based temporal
compression
RT-LRbTC uses linear regression calculated from previous
sensor values to predict future sensor values. This type of
compression algorithmworks well if themeasured data behaves
rather linearly. This is the case for many environmental
magnitudes, such as temperature, humidity and air pressure.
RT-LRbTC is based on several other simple linear

regression-based algorithms. Other simple linear regression-
based compression algorithms have also been developed
(Väänänen and Hämäläinen, 2019; Hung et al., 2013;
Duvignau et al., 2019). RT-LRbTCwas originally presented by
Väänänen and Hämäläinen (2020). RT-LRbTC was
developed especially for compressing sensor data in online
mode. It has a shorter inherent latency than other linearity-
based compression methods, which is its most significant
benefit compared to other methods (Väänänen and
Hämäläinen, 2020).
The inherent latency of the RT-LRbTC algorithm is one

measurement interval Dt in the linear section. The algorithm uses
N previously measured values to calculate the regression line,
which predicts future values with a certain error bound («)
allowed from the line.Newmeasured sensor value is compared to
the previously calculated regression line. If the difference from
the line is smaller than « , then the algorithm waits for the next
measured value. When the new value falls off from the linear
section (distance greater that the error bound « from the line),
then the new line is calculated from the values already available.
From the calculated line, the line parameters and time stamp are
sent/stored. On the network side, if new parameters are not
received, then the values follow the previous regression line with
the error bound allowed. N is a minimum of three, and in this
study, N was three and four (two versions). Calculating the new
regression line requires some calculation: the sum of N times xk,
xk

2, yk, xkyk and the square of the sum of xk. xk is the time stamp
(sample number) and yk is the measured value.N = 3 is the basic
form of RT-LRbTC, and N = 4 version was also tested in this

study to see whether the required calculations had any effect on
the overall energy consumption.
The RT-LRbTC algorithm was tested with real measured

temperature data by Väänänen and Hämäläinen (2020). In the
data sets used, the measurement interval was 10min. The data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets used were two full-year data
sets with a 10-min measurement interval. As a result, with 0.5°
C error bound, the RT-LRbTC algorithm has achieved
compression ratio CR = 5.5–6.0 (Väänänen and Hämäläinen,
2020). The error bound « = 0.5°C represents the maximum
difference between the original measured values and
reconstructed values from the compressed data. The average
reconstruction error is smaller than the error bound used. The
compression ratio achieved with a certain linearity-based
compression algorithm depends on the measured magnitude
characteristics and error bound used. A higher error bound
results in a better compression ratio, but with the cost of a
larger reconstruction error.

4. LoRa device energy consumption with
compression algorithm implemented

The LoRa SF used determines the ToA and thus it also
determines how much energy a transmission consumes. This is
because if the ToA is longer, then the LoRa radio is
transmitting for a longer time and consumes energy for a longer
time as well.
Väänänen and Hämäläinen (2021) measured the LoRa

device energy consumption with ADR set on, and thus, the
LoRa device was transmitting with a DR of 2 (SF10). The
device was in a stable place, and thus, the conditions did not
change, and the DR remained constant. The only difference
between the energy consumption of the transmitting periods is
the difference between whether the downlink is received or not.
If the downlink is received, the energy consumption increases
as the device receives the data. If the downlink is not received,
then the LoRa device only listens shortly during the two receive
windows, and the overall energy consumption is lower. The
downlink message is used by the network server for
acknowledgemessages (ACK) (Maudet et al., 2021).
In this study, a setup similar to that of Väänänen and

Hämäläinen (2021) was used for the practical experiments and
energy consumption measurements. In this study, the ADR was
not on, and the DR was set (fixed) for every transmitting period.
TheDRs tested ranged fromDR0 toDR5. All of these DRs have
a channel width of 125kHz. The downlink SF was automatically
set from the network and was not controlled in this study.
Normally, a downlink message has the same SF as an uplink
message if the first receive window is used. For the second receive
window, the SF12 is used as the default (Casals et al., 2021).
The LoRa device used was Arduino MKRWAN 1310 board.

The Arduino MKR WAN 1310 has a Microchip SAM D21 32-
bit Arm Cortex-M01 based microcontroller and a Murata
CMWX1ZZABZ LoRa module (Arduino MKR WAN 1310).
The Arduino MKR WAN, 1310 was chosen because of its
simplicity and ease of use. It is also very popular among hobbyists
but is also widely used in industry for piloting and experiments.
The temperature was measured using a DHT22 sensor. The

DHT22 also measures humidity, but for this experiment, only

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

506

temperature was used. DHT22 is a low-cost sensor with a
digital output. DHT22 sensor has measurement resolution for
temperature 0.1°C and its accuracy is < 60.5°C (DHT22
temperature and humidity sensor). Another popular and rather
similar temperature and humidity sensor is DHT11, which is
often used in agricultural applications (Rehman et al., 2022). In
this study, DHT22 was chosen because it is slightly more
accurate and has wider measurement ranges; however, it is only
slightly more expensive. It is well suited for this type of
experiment, where the accuracy requirement is not high.
The Arduino MKR WAN 1310 was powered by a 2,000

mAh lithium-polymer (LiPo) battery. The LiPo battery has a
3.7V nominal voltage, resulting theoretically 7.4Wh total
energy capacity, which equals 26,640 Ws. The battery has a
JST-PH connector that can be directly used with the Arduino
MKR WAN 1310 board. The energy consumption of the
Arduino board is lower when powered by a battery than when
powered by the USB port. If the board is powered by the USB
port, then one LED is always ON, and also USB IC-chip
consumes extra energy. The device setup is illustrated in
Figure 1. The setup was built for this experiment only, but it
could be used in real practical case when enclosed properly
against environmental conditions.

4.1Measurement setup
For the experimental energy consumption measurements, the
Arduino board was set to measure the temperature with the
DHT22 sensor at regular intervals. After each measurement,
the compression algorithm was applied by microcontroller. If
the result of the algorithm required data transmission, then the
data were sent via the LoRa connection. After every
measurement event and possible data transmission, the device
was set to go to deep-sleep mode. The device woke up only for
the measurement, compression algorithm and possible
transmission periods. The LoRa network was a commercial
network operating in Finland.
The current consumption in the active mode was measured

using a shunt resistor. Two oscilloscope channels were used to
measure the voltage across a 10 X shunt resistor, which was in
series at the battery plus wire. Both oscilloscope channels used
battery negative terminal as the reference level. The
measurement setup is illustrated in Figure 2(a). Current

consumption was calculated from the measured voltages I =
(V1 –V2)/R, whereR is the shunt resistor (10X).V2 can also be
used to measure the supply voltage in the battery connection of
the board. Thus, the power consumption of the device is:

P ¼ V � I ¼ V2 � V1 � V2ð Þ
R

(1)

In a previous study by Väänänen and Hämäläinen (2021),
current was measured using an oscilloscope current probe.
That kind of setup is shown in Figure 2(b), where the ammeter
is the current probe. The current probe is very easy to use, but
its accuracy is poor when measuring low-level values. The
shunt resistor measurement of the current is more accurate and
repeatable. The results obtained by Väänänen and Hämäläinen
(2021) were used in this paper for comparisonwhen available.
In this study, the current consumption in the deep-sleep

mode was measured using a digital multimeter (DMM) in
series with a battery wire. The DMM is more accurate for
measuring low-level deep-sleep current than the shunt resistor
method used for active periods. A high-quality DMM can
reliably measure mA level current value if it remains stable. The
DMM cannot be used to measure current consumption for
active periods because the current level is changing and does
not remain static.
The device used for themeasurements was a TektronixMSO

4104 mixed signal oscilloscope with a 1GHz measurement
bandwidth, and the probes used were TAP1500 active voltage
probes. The voltage in the battery connector of the board was
also measured separately using a Tektronix P6139A passive
voltage probe. The DMM used was a Tenma RS232C
TrueRMSmodel.

5. Measurement results

The measurements were carried out without implementing a
compression algorithm and with compression algorithms to see
whether the algorithm calculations have any effect on energy
consumption. The energy consumption for sensor
measurement and algorithm calculations was measured with all

Figure 1 Arduino MKRWAN 1310 in test setup

Figure 2 Current consumption measurement circuits

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

507

algorithm combinations and without an algorithm.
Transmission energy consumption was measured using two
different payloads. If the measured raw or compressed value is
sent with a time stamp, only 8 bytes are needed to transmit.
This is the case without a compression algorithm or with the
LTC algorithm. With the RT-LRbTC algorithm, a total of
12bytes are transmitted because two line parameters (slope
and base) and a time stamp are needed to transmit.
Figure 3 presents the overall LoRa sensor node energy

consumption scenario over time. Number 1 in Figure 3
represents deep-sleep energy consumption (base consumption).
Number 2 represents the extra energy consumption of the sensor
measurement and data processing (with or without the
compression algorithm implemented). It occurs at regular
intervals that are determined by the measurement interval.
Number 3 represents the energy consumption of the LoRa
transmission. LoRa transmission is required after every
measurement event if no compression algorithm is implemented.
If a compression algorithm is implemented, LoRa transmission
does not occur after every measurement event. The deep-sleep
energy consumption is presented here as existing all the time, and
the measurement events and LoRa transmissions were presented
and measured as extra energy consumption on top of deep-sleep
base energy consumption. When the device is measuring or
transmitting, it is not in deep-sleep mode, but for measurement
purposes, this type of presentation is easier. In any case, the deep-
sleep power consumption is a fraction of the measurement event
and/or transmitting event power consumption.

5.1 Deep-sleep current consumption
The deep-sleep current consumption was measured without
implementing an algorithm, and the result was confirmed with
algorithms implemented. As the device was in deep-sleep mode,
there was no difference if the algorithm was implemented or not.
The device was set to go into deep-sleep mode between the
measurement periods. A similar setup was used by Väänänen and
Hämäläinen (2021), and the results obtained in this studywere in
same level. The measured deep-sleep current was 106–107mA.
When the device goes into deep-sleep mode, the current drops
immediately to 150–160mA, and after 10–20 s, it reaches
107 mA level. The voltage in the battery connector of the board
was measured with an oscilloscope at the same time. The battery
voltage was 3.99V in this case, thus resulting in deep-sleep power
consumption Pds = Vbattery·Ids = 3.99V � 117·10�6 A =
4.6683·10�4W=0.46683mW.

5.2 Sensormeasurement and algorithm energy
consumption
As the measurement interval is typically minutes, the sensor
node remains most of the time in deep-sleep mode, but it wakes
up with a regular basis to perform the measurement and
algorithm calculations. If the result from the algorithm

calculation is that there is no need to transmit any data, then the
device returns to the deep-sleep mode. The real-time clock
(RTC) runs even in deep-sleep mode and wakes the device up
on a regular basis, which is determined by the measurement
interval.
The energy consumed by the sensor measurement, and

possible algorithm was measured with the oscilloscope using a
shunt resistor, as explained in the measurement setup section.
The oscilloscope measurement results are shown in Figure 4.
Channels 2 and 3 (blue and purple lines on top of one another)
were used to measure the voltage difference across the shunt
resistor. Channel 4 (green line) measured the voltage in the
battery connector. The power line (red MATH-line in mW)
was calculated using the oscilloscope MATH-function from
Channels 2, 3 and 4 data: P =U � I = CH4 � ((CH2 – CH3)/
10). CH2-CH3 denotes the voltage across the shunt resistor.
10 is the resistor size in ohms. The oscilloscope measurement
function was used to calculate the MATH line area (integral),
which is the total energy consumed in the oscilloscope window
timescale (5.022 mWs during 2 s in Figure 4). Then, the
average value of the red MATH-line was measured before the
measurement event (device wake up) when the device was in
deep-sleep mode. The average deep-sleep value (average
power) was multiplied by the timescale used in the oscilloscope
screen (2 s in Figure 4) to obtain the base energy consumed,
which was subtracted from the total energy measured (5.022
mWs in Figure 4). Thus, additional energy consumption from
the sensormeasurement and data processing wasmeasured.
The same measurement was repeated a minimum of ten

times for each algorithm implemented as well as without the
algorithm implemented. The measurement results are listed in
Table 2. The average value was calculated from all
measurements using a certain algorithm (a minimum of ten
measurements with each algorithm).Max andMin values show
the maximum and minimum measured values, and Std Dev is
the standard deviation calculated from all the measured values
with the certain algorithm implemented. Last row presents
measurement results with current probe (Väänänen and
Hämäläinen, 2021). Figure 5 shows the average results with the
maximum, minimum and standard deviation values for each
algorithm.
It can be seen from the results presented in Table 2 and

Figure 5 that the effect of the algorithm on the measurement and
data acquisition event energy consumption is negligible. The
algorithms implemented and evaluated were computationally so
light that the possible effect on the energy consumption was
smaller than themeasurement inaccuracy.

5.3 LoRa transmission energy consumption
The scenario for the LoRa transmission energy consumption is
shown in Figure 6 (as a function of time). Number 1 in the
figure is the base energy consumption, which is the deep-sleep
energy consumption. Number 2 represents the sensor
measurement, data acquisition and algorithm energy
consumption in addition to base energy consumption. Number
3 is the LoRa transmission uplink, and number 4 is the LoRa
transmission downlink if received (in Figure 3, the uplink and
downlink energy consumptions are combined and presented by
number 3).

Figure 3 LoRa sensor node overall energy consumption scenario

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

508

In this measurement setup, the overall energy consumption
was measured using the oscilloscope from the timescale that
was visible on the oscilloscope screen. The oscilloscope
MATH-function was used to calculate the overall power
(red MATH-line in Figures 7, 8 and 9) line in mW, and its
area (integral) was calculated using the oscilloscope
measurement function (in mWs). Then, the average base
power level was measured using the oscilloscope ZOOM
function from the time before the device wakes up (in deep-

sleep mode). The average power was used to calculate the
average base energy consumption at that timescale
(oscilloscope screen, 10 s in Figures 7, 8 and 9). This
average base energy (number 1 in Figure 6) was subtracted
from the overall measured energy consumption. This results

Figure 4 Sensor measurement and data processing energy consumption

Table 2 Sensor measurement and algorithm energy consumption with
and without algorithms implemented. Results are in mWs

No
compression

(mWs)

RT-LRbTC,
N = 3
(mWs)

RT-LRbTC,
N = 4
(mWs)

LTC
(mWs)

Max 5.05 5.24 5.22 5.30
Average 4.88 4.96 4.98 4.95
Std dev 0.11 0.18 0.16 0.16
Min 4.70 4.64 4.68 4.75
From current probe
measurement

4.57 4.78 4.83 4.78

Figure 5 Sensor measurement and possible algorithm overall energy
consumption

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

509

in extra energy that the sensor, algorithm and LoRa
transmission add to the base energy consumption.
The sensor measurement and algorithm effect (Table 2,

which is number 2 in Figure 6) was then subtracted from the
measurement results, resulting in transmission-only energy
consumption. LoRa transmission energy consumption was
measured for 8 bytes (for LTC and no compression cases)
and 12 bytes (for RT-LRbTC cases) payload situations with
every SF (SF7-SF12). The DR can be adjusted in Arduino
MKRWAN 1310 by enabling ADR and setting a certain DR
value:
� modem.setADR(true); and
� modem.dataRate (0);//set data rate to be 0-5.

This needs to be done before every transmission period when
the radio wakes up. The total transmission energy consumption
for every SF case was measured a minimum of ten times, and
the average values are listed in Table 3.
The significant differences in energy consumption

depending on the SF used can be seen in Table 3. The
downlink was sent from the network side every time, even
though the ACK was not required, but quite often, it was not
received. If the downlink is not received, then the transmission
period energy consumption is lower, but that situation should
not be the normal case. If these values are used to predict the
device lifetime, the values with the downlink received should be
used as the worst case for the energy consumption.
The difference between the received and unreceived

downlinks can be seen in Figures 7 and 8. In Figure 8, the LoRa
radio opens two short receive windows after transmission. The
first receive window is approximately 1 s after the transmission,
and the second window is 1 s after the first window. In Figure 7,
the LoRa radio opens the first receive window 1 s after
transmitting, and in this case, the LoRa radio receives the
downlink message. The SF effect on the ToA is shown in
Figures 7, 8 and 9. In Figures 7 and 8 with SF12, the
transmission takes approximately 1,500ms, while with SF8 (in

Figure 6 LoRa node energy consumption scenario

Figure 7 Lora transmission (8 bytes) with uplink SF12 and downlink SF12

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

510

Figure 9), it takes approximately 100–200ms. That explains
the significant difference in energy consumption.

6. Overall energy consumption and average
power consumption

The overall energy consumption of the LoRa sensor node is a
combination of deep-sleep consumption, measurement event
consumption, algorithm execution and possible LoRa
transmission. In this study, the sensor measurement event and
the algorithm execution were combined. The sensor
measurement and algorithm calculations (WM) take place on a
regular basis and are determined by the measurement interval
(Dt). The LoRa transmission event (energy consumed WS) is
determined by the measurement interval but also by the
compression ratio (CR) that the algorithm achieves. The overall
energy consumed during time tx can be estimated using
equation (2):

Wtot ¼ Pdstx 1
tx
Dt

WM 1
tx

CR� Dt
Ws (2)

where Pdstx is the energy consumed by the device in the deep-
sleep mode during time tx. tx/Dt is the number of measurement

periods. tx/(CR � Dt) is the number of transmission periods. It
can be seen from the equation that it is possible to minimize the
overall energy consumption either by lengthening the
measurement interval or using a compression algorithm, which
results in a high compression ratio for the measured data
stream. Other possibilities would require different hardware
solutions.
If the total available energy is known (battery capacity for

example), then the overall lifetime can be solved from
equation (2):

tx ¼ WToT

Pds 1
WM
Dt 1 WS

CR�Dt
(3)

The average power consumption can be derived from
equation (2) by dividing by time tx as P =W/t. Resulting in
equation (4):

Pavg ¼ Pds 1
WM

Dt
1

WS

CR � Dt (4)

The DHT22 temperature sensor has an accuracy of 60.5°C.
Thus, it was reasonable to use the error bound value « = 0.5°C for
the compression algorithms. Väänänen and Hämäläinen (2020)

Figure 8 LoRa transmission (8 bytes) with uplink SF12 and downlink not received

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

511

tested the LTC and RT-LRbTC algorithms for real temperature
data sets with a 10-min measurement interval. Temperature data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets usedwere 2018 and 2019 full-year
data from the Salla Naruska measurement station. The
temperature data were measured in degrees Celsius, with a

resolution of 0.1°. With « = 0.5°C, the compression algorithms
achieved compression ratios of CR = 9.5–10.2 with LTC and
CR=5.5–6.0withRT-LRbTC (N=3).
Table 4 lists the average power consumption for different

compression algorithms with different SF scenarios. The
measurement interval was 10min (Dt = 600 s). The values in

Figure 9 LoRa transmission (8 bytes) with uplink SF8 and downlink SF10

Table 3 LoRa Transmission energy consumption with different SFs and two different payloads. Results are in mWs

8 bytes (mWs) 12 bytes (mWs)

Uplink SF12, downlink SF12 248.89 257.82
Uplink SF12, downlink SF9 (downlink not received) 201.02 212.32
Uplink SF11, downlink SF12 163.93 162.73
Uplink SF11, downlink SF9 (downlink not received) 119.63 120.12
Uplink SF10, downlink SF12 104.41 107.60
Uplink SF10, downlink SF9 (downlink not received) 65.28 68.03
Uplink SF9, downlink SF11 59.55 58.60
Uplink SF9, downlink SF9 (downlink not received) 41.01 42.50
Uplink SF8, downlink SF10 32.54 33.26
Uplink SF8, downlink SF9 (downlink not received) 27.89 28.78
Uplink SF7, downlink SF9 18.11 19.09
Uplink SF7, downlink SF9 (downlink not received) 13.99 No data
Uplink SF7, downlink SF9 (downlink received in second window) 20.32 No data

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

512

Table 4 were calculated using equation (4) from the
measured values from Tables 2 and 3 (8 bytes results for
LTC and no compression, 12 bytes results for RT-LRbTC
algorithms). The compression ratios were CR = 10 for LTC
and CR = 6 for both RT-LRbTC algorithms, which are
realistic values and were achieved by Väänänen and
Hämäläinen (2020).
There were no significant differences in the power

consumption values between the algorithms tested. The
differences were larger for high SF values when the effective
compression algorithm can achieve energy savings by reducing
the number of LoRa transmission periods. LoRa transmission

periods are significant energy consumers, particularly if the
used SF is high. With high SF values, the compression
algorithms used were very effective for reducing energy
consumption. This is clearly shown in Figure 10 (from
Table 4).
The battery used in this experiment was a 2,000 mAh

LiPo battery with 3.7 V nominal voltage. Its overall capacity
is 7.4Wh, which is 26,640 Ws. This capacity is the nominal
capacity in the optimal situation. For example, in cold
weather, the capacity of lithium-based batteries significantly
collapses (Li et al., 2017). Aging also affects the battery
capacity.

Table 4 Average power consumption with different algorithms implemented and with certain compression ratios. Results are in mW

No compression
(mW)

RT_LRbTC, N = 3
(mW)

RT_LRbTC, N = 4
(mW)

LTC
(mW)

Uplink SF12, downlink SF12 0.898 0.548 0.548 0.517
Uplink SF12, downlink SF9 (downlink not received) 0.818 0.535 0.535 0.509
Uplink SF11, downlink SF12 0.756 0.522 0.522 0.503
Uplink SF11, downlink SF9 (downlink not received) 0.682 0.510 0.510 0.496
Uplink SF10, downlink SF12 0.657 0.506 0.506 0.493
Uplink SF10, downlink SF9 (downlink not received) 0.592 0.495 0.495 0.487
Uplink SF9, downlink SF11 0.582 0.493 0.493 0.486
Uplink SF9, downlink SF9 (downlink not received) 0.551 0.488 0.488 0.483
Uplink SF8, downlink SF10 0.537 0.486 0.486 0.481
Uplink SF8, downlink SF9 (downlink not received) 0.530 0.484 0.484 0.481
Uplink SF7, downlink SF9 0.513 0.482 0.482 0.479
Uplink SF7, downlink SF9 (downlink not received) 0.506 – – 0.478
Uplink SF7, downlink SF9 (downlink received in second window) 0.517 – – 0.479

Figure 10 LoRa node power consumption with different SF values

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

513

The battery lifetime was calculated using equation (3) in the
case where full capacity was available. The values used were
WTOT = 26,640 Ws and Pds = 4.6683·10�4 W. WM and WS

values were from the Tables 2 and 3. CR values of 10 for LTC
and 6 for RT-LRbTC. The battery lifetimes in days for
different algorithms and SF scenarios are listed in Table 5. RT-
LRbTC withN = 4 is not presented here because its results are
very close to RT-LRbTCwithN= 3.
As can be seen from Table 5, it is easy to achieve over an 18-

month lifetime if the RT-LRbTC algorithm is used (with a 0.5°
error bound). Without implementing a compression algorithm,
it is possible to have less than a 12-month lifetime if the device
is located at a long distance from the base station, or if there are
obstacles between the device and base station (thus using a high
SF value). In a good network coverage situation, the difference
is small between the compression algorithm used or without
compression algorithm implemented. Generally, the deep-
sleep current consumption of 107 mA is rather high for a
modern microcontroller-based LoRa node, and it determines
the overall lifetime.
In research by Väänänen and Hämäläinen (2021), the DR

was not fixed, and instead, the ADR was used. Thus, in that
case, the LoRa node was always transmitting with SF10, and in
approximately 50% of the transmitting periods, the downlink
was received (SF12). The average transmission energy
consumption was measured and calculated to be 91.47 mWs.
Using this value, the battery lifetime was calculated to be
approximately 490days if no compression algorithm was
implemented, 630days if the LTC algorithm was used and
616days if the RT-LRbTC algorithm was used. This case is
valid in that situation; however, in some other circumstances,
the LoRa node may use other SF values, and its effect on the
lifetime can be estimated by the results presented in Table 5.

7. Conclusions

From the results achieved in this study, the LoRa DR has a
significant effect on the overall power consumption of the LoRa
sensor node, especially if no compression algorithm is used.
However, normally it is not possible to control the DR because
the ADR adjusts the optimal SF value. If the base station is very
far away, then a high SF must be used to achieve that long
range, resulting in higher power consumption.

Simple temporal compression algorithms are very effective for
reducing the overall energy consumption of the LoRa sensor
node if the reconstruction error, determined by the error
bound, is acceptable. From the results achieved in this study,
the algorithm calculations did not have a significant effect on
energy consumption. Nevertheless, these algorithms can
significantly reduce the number of LoRa transmission periods
and thus achieve significant energy consumption savings. The
overall reduction in energy consumption was due to the
reduced number of radio transmission periods. The LTC
algorithm is very effective and simple algorithm, but its
unpredictable latency is not well suited for online applications
with latency requirements. RT-LRbTC is not as effective
compression algorithm, and it is a bit more complicated, but
with predictable latency, it is well suited for compressing
environmental data in the online mode. In this research, the
measurement interval was rather long, and thus, the LoRa node
deep-sleep consumption became a significant factor
determining the device lifetime.

References

Azar, J., Makhoul, A., Darazi, R., Demerjian, J. and Couturier,
R. (2018), “On the performance of resource-aware
compression techniques for vital signs data in wireless body
sensor networks”, IEEE Middle East and North Africa
Communications Conference (MENACOMM), Jounieh,
pp. 1-6, doi: 10.1109/MENACOMM.2018.8371032.

Casals, L., Gomez, C. and Vidal, R. (2021), “The SF12 well
in LoRaWAN: problem and end-device-based solutions”,
Sensors, Vol. 21 No. 19, p. 6478, doi: 10.3390/
s21196478.

Duvignau, R., Gulisano, V., Papatriantafilou, M. and Savic, V.
(2019), “Streaming piecewise linear approximation for
efficient datamanagement in edge computing”, Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing.
Association for Computing Machinery, New York, NY,
pp. 593-596.

Farnell (2021), “2021 Global IoT trends report”, available at:
https://uk.farnell.com/iot-trends-2021 (accessed 6 October
2021).

Table 5 Battery lifetime in days with different scenarios

No compression (days) RT-LRbTC, N = 3 (days) LTC (days)

Uplink SF12, downlink SF12 343.4 562.6 596.0
Uplink SF12, downlink SF9 (downlink not received) 376.9 575.8 605.3
Uplink SF11, downlink SF12 407.7 591.0 612.7
Uplink SF11, downlink SF9 (downlink not received) 451.8 604.8 621.9
Uplink SF10, downlink SF12 469.2 608.9 625.0
Uplink SF10, downlink SF9 (downlink not received) 520.9 622.4 633.4
Uplink SF9, downlink SF11 529.5 625.7 634.7
Uplink SF9, downlink SF9 (downlink not received) 559.1 631.5 638.7
Uplink SF8, downlink SF10 574.2 634.8 640.6
Uplink SF8, downlink SF9 (downlink not received) 582.2 636.4 641.6
Uplink SF7, downlink SF9 600.7 640.0 643.8
Uplink SF7, downlink SF9 (downlink not received) 608.9 No results 644.7
Uplink SF7, downlink SF9 (downlink received in second window) 596.5 No results 643.3

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

514

Giorgi, G. (2017), “A combined approach for real-time data
compression in wireless body sensor networks”, IEEE
Sensors Journal, Vol. 17 No. 18, pp. 6129-6135, doi:
10.1109/JSEN.2017.2736249.

Harrison, D., Burmester, D., Seah,W. and Rayudu, R. (2016),
“Busting myths of energy models for wireless sensor
networks”, Electronics Letters, Vol. 52No. 16, pp. 1412-1414,
available at: https://doi.org/10.1049/el.2016.1591

Hung, N.Q.V., Jeung, H. and Aberer, K. (2013), “An
evaluation of model-based approaches to sensor data
compression”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 25 No. 11, pp. 2434-2447, doi: 10.1109/
TKDE.2012.237.

Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M. and
Ismail, M. (2017), “Energy-efficient wireless sensor
networks for precision agriculture: a review”, Sensors, Vol. 17
No. 8, p. 1781, doi: 10.3390/s17081781.

Klus, L., Klus, R., Lohan, E.S., Granell, C., Talvitie, T.,
Valkama, M. and Nurmi, J. (2021), “Direct lightweight
temporal compression for wearable sensor data”, IEEE
Sensors Letters, 2021, doi: 10.1109/LSENS.2021.3051809.

Lavric, A. and Popa, V. (2018), “Performance evaluation of
LoRaWAN communication scalability in large-scale
wireless sensor networks”, Wireless Communications and
Mobile Computing, Vol. 2018, pp. 1-9, doi: 10.1155/2018/
6730719.

Li, Q., Lu, D., Zheng, J., Jiao, S., Luo, L., Wang, C. and Xu,
W. (2017), “Li1-desolvation dictating Lithium-Ion
battery’s low-temperature performances”, ACS Applied
Materials & Interfaces, Vol. 9 No. 49, pp. 42761-42768,
available at: https://doi.org/10.1021/acsami.7b13887

Lin, J.W., Liao, S.W. and Leu, F.Y. (2019), “Sensor data
compression using bounded error piecewise linear
approximation with resolution reduction”, Energies, Vol. 12
No. 13, p. 2523, doi: 10.3390/en12132523.

Lin, D., Wang, Q., Min, W., Xu, J. and Zhang, Z. (2021), “A
survey on energy-efficient strategies in static wireless sensor
networks”, ACM Transactions on Sensor Networks, Vol. 17
No. 1, pp. 1-48, doi: 10.1145/3414315.

Li, B., Sarbishei, O., Nourani, H. and Glatard, T. (2018), “A
multi-dimensional extension of the lightweight temporal
compression method”, IEEE International Conference on Big
Data (Big Data), Seattle, WA, USA, pp. 2918-2923, doi:
10.1109/BigData.2018.8621946.

Lu, S., Xia, Q., Tang, X., Zhang, X., Lu, Y. and She, J. (2021),
“A reliable data compression scheme in sensor-cloud
systems based on edge computing”, IEEE Access, Vol. 9,
pp. 49007-49015, doi: 10.1109/ACCESS.2021.3068753.

Maudet, S., Andrieux, G., Chevillon, R. and Diouris, J.
(2021), “Refined node energy consumption modeling in a
LoRaWAN network”, Sensors, Vol. 21 No. 19, p. 6398,
doi: 10.3390/s21196398.

Morin, E., Maman, M., Guizzetti, R. and Duda, A. (2017),
“Comparison of the device lifetime in wireless networks for
the internet of things”, IEEE Access, Vol. 5, pp. 7097-7114,
doi: 10.1109/ACCESS.2017.2688279.

Parker, D., Stojanovic, M. and Yu, C. (2013), “Exploiting
temporal and spatial correlation in wireless sensor
networks”, 2013 Asilomar Conference on Signals, Systems

and Computers, pp. 442-446, doi: 10.1109/
ACSSC.2013.6810315.

Prauzek,M., Konecny, J., Borova,M., Janosova, K.,Hlavica, J.
and Musilek, P. (2018), “Energy harvesting sources, storage
devices and system topologies for environmental wireless
sensor networks: a review”, Sensors, Vol. 18 No. 8, p. 2446,
doi: 10.3390/s18082446.

Rehman, A., Saba, T., Kashif, M., Fati, S.M., Bahaj, S.A. and
Chaudhry, H. (2022), “A revisit of internet of things
technologies for monitoring and control strategies in smart
agriculture”, Agronomy, Vol. 12 No. 1, p. 127, doi: 10.3390/
agronomy12010127.

S�ac�aleanu, D.I., Popescu, R., Manciu, I.P. and Peris�oar�a, L.A.
(2018), “Data compression in wireless sensor nodes with
LoRa”, 2018 10th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), 2018, pp. 1-4,
doi: 10.1109/ECAI.2018.8679003.

Sarbishei, O. (2019), “Refined lightweight temporal
compression for energy-efficient sensor data streaming”,
IEEE 5th World Forum on Internet of Things (WF-IoT),
Limerick, Ireland, pp. 550-553, doi: 10.1109/WF-
IoT.2019.8767351.

Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow,
M. and Estrin, D. (2004), “Lightweight temporal
compression of microclimate datasets [wireless sensor
networks]”, 29th Annual IEEE International Conference on
Local Computer Networks, pp. 516-524, doi: 10.1109/
LCN.2004.72.

Ullo, S.L. and Sinha, G.R. (2020), “Advances in smart
environment monitoring systems using IoT and sensors”,
Sensors, Vol. 20 No. 11, p. 3113, doi: 10.3390/
s20113113.

Väänänen, O. and Hämäläinen, T. (2019), “Compression
methods for microclimate data based on linear
approximation of sensor data”, The 19th International
Conference on Next Generation Wired/Wireless Advanced
Networks and Systems NEW2AN 2019, August 26 – 28, 2019,
St.Petersburg, Russia.

Väänänen, O. and Hämäläinen, T. (2020), “Sensor data
stream on-line compression with linearity-based methods”,
IEEE International Conference on Smart Computing
(SMARTCOMP), Bologna, Italy, pp. 220-225, doi: 10.1109/
SMARTCOMP50058.2020.00049.

Väänänen, O. and Hämäläinen, T. (2021), “LoRa-based
sensor node energy consumption with data compression”,
2021 IEEE International Workshop on Metrology for Industry
4.0 & IoT (MetroInd4.0&IoT), pp. 6-11, doi: 10.1109/
MetroInd4.0IoT51437.2021.9488434.

Further reading

Arduino MKR WAN 1310 (2022), available at: https://store.
arduino.cc/mkr-wan-1310 (accessed 6October 2021).

Digita (2022), “IoT LoRaWANnetwork coverage in Finland”,
available at: www.digita.fi/en/iot-lorawan-network-coverage-
map/ (accessed 6October 2021).

DHT22 temperature and humidity sensor (2022), available at:
www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.
pdf (accessed 6October 2021).

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

515

LoRa Alliance (2022a), “What is LoRaWAN specification”,
available at: https://lora-alliance.org/about-lorawan/ (accessed
6October 2021).

LoRa Alliance (2022b), “RP002-1.0.0 LoRaWAN regional
parameters”, available at: https://lora-alliance.org/wp-content/
uploads/2019/11/rp_2-1.0.0_final_release.pdf (accessed 6
October 2021).

Semtech, (2022) “What are LoRa and loRaWAN”, available
at: https://lora-developers.semtech.com/documentation/

tech-papers-and-guides/lora-and-lorawan (accessed 6
October 2021).

Semtech, (2022) “What is an adaptive data rate”, available
at: https://lora-developers.semtech.com/documentation/
tech-papers-and-guides/understanding-adr/ (accessed 6
October 2021).

Corresponding author
Olli Väänänen can be contacted at: olli.vaananen@jamk.fi

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

516

VIII

LINEARITY-BASED SENSOR DATA ONLINE COMPRESSION

METHODS FOR ENVIRONMENTAL APPLICATIONS

by

Olli Väänänen & Timo Hämäläinen, 2023

Proceedings of the 6th Conference on Cloud and Internet of Things (CIoT)

https://doi.org/10.1109/CIoT57267.2023.10084892

Reproduced with kind permission by IEEE.

https://doi.org/10.1109/CIoT57267.2023.10084892

Linearity-based Sensor Data Online Compression
Methods for Environmental Applications

Olli Väänänen
School of Technology

JAMK University of Applied Sciences
Jyväskylä, Finland

ORCID: 0000-0002-7211-7668

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

ORCID: 0000-0002-4168-9102

Abstract— Environmental monitoring is a typical Internet of
Things (IoT) application. Environmental monitoring plays a
significant role, for example, in smart farming and smart city
applications. Environmental magnitudes are usually measured
using wireless sensor nodes, which are often battery-powered,
and the number of sensing nodes can be large. One effective
method for reducing the energy consumption of a sensor node is
to use data compression to reduce the amount of data required
for transmission via a wireless connection. Compressing the
sensor data means fewer transmission periods, and thus, lower
energy consumption. Compression methods should be effective
for compressing environmental magnitudes and be
computationally light to be suitable for constrained sensor
nodes. A compression algorithm should be able to compress an
online data stream. In this paper, we review some compression
algorithms suitable for environmental monitoring and present
two new versions of those algorithms. The algorithms were
evaluated, tested, and compared. The main parameters used for
the comparisons were compression ratio, root mean square
error, and inherent latency. The simulation results obtained
using real datasets demonstrate that simple linearity-based
compression algorithms are effective and suitable for
compressing environmental data. Two new compression
algorithm versions proved to be effective for compressing sensor
data with reasonable compression quality and predictable
inherent latency.

Keywords—compression algorithm, data compression, edge
computing, Internet of Things, sensor data

I. INTRODUCTION
In environmental monitoring the wireless sensor nodes can

be located in wide area and the number of nodes can be large.
Wireless sensor nodes are often battery powered and replacing
empty batteries can be costly, as the nodes may be located in
a wide area and thus require manpower to complete the
replacement. Thus, minimizing the energy consumption and
lengthening the lifetime of the sensor node can be a cost-
effective solution. Compressing the sensor data stream in
online mode can reduce the transmission periods needed via
wireless connection. Wireless transmission is known to be the
most energy consuming operation in wireless sensor node.
Between sensing and transmission phases the node can be in
sleep mode.

In this paper, some basic linearity-based compression
algorithms are presented, and two new versions are developed
and evaluated. The algorithms are compared to each other by
compression ratio, root mean square error and algorithm
inherent latency. The remainder of this paper is organized as
follows: present algorithms are presented in Section II. New
algorithm versions are presented in Section III. Compression
algorithms inherent latency considerations are in Section IV.
Algorithms’ ability to compress environmental datasets is in
Section V. Section VI is the summary of the results and finally
section VII presents the conclusions.

II. LINEARITY-BASED TEMPORAL COMPRESSION
METHODS FOR SENSOR DATA

A. Linear Regression based Temporal Compression
Linear Regression based Temporal Compression

(LRbTC) algorithm is based on basic linear regression and it
is designed to compress the sensor data in online mode. Thus,
the dataset is not already available, but as a function of time,
the new data values come in sequence with constant
frequency, and the LRbTC algorithm compresses the data
value by value [1]. The algorithm waits until the first N
measurement values are available and then the regression line
described by the N values is calculated. These N values are
expected to predict the future values of the sensor data. If the
data behave linearly, then the regression line can predict the
consecutive measurement values with a certain error bound (ε)
allowed. N has a minimum of three values, but four and five
values were also tested in [1].

Calculating the linear regression of N values yields the
linear line that best fits the N values used. The calculation of
the regression line is based on the least-squares method, which
minimizes the sum of squares of the deviation between data
points. After calculating the regression line of the first N
measured values, the algorithm stores and/or sends the starting
point of the regression line. The inherent latency of the
algorithm is (N-1)Δt at this point when the regression line is
calculated. Then when a new measured value is achieved after
one measurement interval (Δt), the algorithm compares the
value to the regression line value at that timestamp. If the
value is within one error bound from the line, the algorithm
waits for the next measured value and makes a new
comparison. When the new measured value falls off from the
regression line prediction (differs more than one error bound
from the line), the algorithm stores and/or sends the linear
regression line value in one timestamp before (last timestamp
when the measured value was still within one error bound
from the line) as an end point of the linear segment. Then the
algorithm waits for N-1 new measured values (because one
value is already available; the one that was in more than one
error-bound distance from the line and ended the linear
segment). After calculating the new regression line, the
algorithm stores and/or sends the new regression line starting
point.

The weakness of this basic form of LRbTC is the
possibility that the values used to calculate the regression line
may differ more than one error bound (ε) from the regression
line. Thus, the values derived from the compressed dataset
may differ more than one error bound from the original values
and therefore the error bound requirement is not guaranteed
[1]. A modified version was developed to solve the
aforementioned weakness in the basic version. The modified
LRbTC (M-LRbTC) is analogous to LRbTC, except that the
comparison between the raw values and regression line is also
made for the values used to calculate the regression line [1]. If

the difference between the calculated regression line and the
raw value or values is larger than the error bound, then the first
two raw values are retained (stored/sent), and a new regression
line is calculated when the next two new values are available.
The algorithm works if N = 3 or more [1],[2].

The output of the algorithm can be presented as a
compressed dataset, M-LRbTC(S) = <(c1, τ1), (c2, τ2),…, (ck,
τk)>. The compressed data values (ci, τi) are either the starting
points or end points of the linear segments, or the raw data
values if the difference has been too big between the line and
the raw values that were used to calculate the line.

One drawback of M-LRbTC (and in basic LRbTC) is that
two data pairs are required for each linear segment; starting
point and end point. Another drawback of this algorithm is the
inherent latency. Latency is predicted when the new
regression line is calculated, and it is determined by N. After
the regression line is calculated, the latency is not known and
is not predictable. The better the regression line predicts future
values, the longer is the latency. The drawback of
unpredictable latency can be overcome by sending the
regression line parameters a (slope) and b (base) with the line
starting point timestamp. Thus, in this case, the compressed
data can be represented as LRbTC(S) =
<(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),…,(ak-1,bk-1,τk-1),(ck,τk)>. The
latency in this version is the N–1 measurement intervals when
calculating the regression line. When the line parameters are
sent, the receiver knows that the values follow the line with
one measurement interval latency until the line-end
parameters (ci and τi) are received [2].

B. Real-Time Linear Regression Based Temporal
Compression
RT-LRbTC was presented in [2] as a modification of M-

LRbTC to achieve a predictable and shorter inherent latency.
RT-LRbTC uses already available sensor values to calculate a
new regression line. Thus, the inherent latency is only one
measurement interval, Δt. A flowchart of the RT-LRbTC is
presented in Fig. 1. Initially, the algorithm works as an M-
LRbTC, and the inherent latency is N–1 measurement
intervals long, which is (N-1)Δt. In step 6, the algorithm stores
and/or sends the regression line parameters and the timestamp
of the regression line starting point instead of the line starting
point value. In step 7, when the algorithm is in the linear
section, the inherent latency is one measurement interval (Δt).
If the difference in step 8 is larger than the error bound
allowed, the new regression line is calculated in step 9, but the
line is calculated using the already available values. The
compressed dataset is presented as RT-LRbTC(S) = <(a1,b1,τ1),
(a2,b2,τ2),…, (ak,bk,τk)>, where ai and bi are the regression line
parameters and τi is the line beginning timestamp. When the
new line parameters with the timestamp are received, it is
known that the previous line ended one measurement interval
earlier. Thus, the inherent latency of the algorithm was
described by the measurement frequency [2].

The compression efficiency is dependent on the data
characteristics, and in most cases, RT-LRbTC has a lower
inherent compression ratio (CR) than M-LRbTC [2]. As RT-
LRbTC generally has a lower CR, it means that there are more
linear regression lines after compression with RT-LRbTC
than with M-LRbTC. An advantage of RT-LRbTC is that the
line parameters must be sent only once for each linear section,
thus resulting in a better compression ratio compared to M-
LRbTC [2]. In the basic version of M-LRbTC, the starting and

endpoint values with timestamps need to be sent for each
linear segment. RT-LRbTC benefits from the fact that,
compared to (N-1)Δt latency with M-LRbTC, there is no
inherent latency when the new regression line is calculated.

Fig. 1. RT-LRbTC flowchart

C. Lightweight Temporal Compression
LTC is a well-known and simple compression algorithm.

It was first presented in [3], but a similar algorithm, called Fan,
was actually presented before in [4] for electrocardiogram
(ECG) data. LTC is a very effective compression algorithm,
especially for environmental data that behave rather linearly
when the observation time window is short. The compression
ratio depends on the data characteristics and error bound used.
LTC can achieve a compression ratio as high as 20 when
compressing the environmental temperature data with a 10-
minute measurement interval and 1.0 °C error bound [1].

The LTC has an unpredictable latency and is dependent on
each linear section length. Thus, the higher the CR, the longer
the latency. If the data behave very linearly, a long latency is
derived. When the new linear segment starts, the starting point
is known, but the direction of the following values remains
unknown until the linear segment ends, and the end point is
stored in the compressed dataset. Due to unpredictable
latency, LTC is not suited for real-time applications. In this
study, LTC has been used as a comparison for the other
algorithms.

Some slight variations of the original LTC algorithm have
been developed. In [5], a modification of the LTC algorithm
was used. Other variations include Adaptive Lightweight
Temporal Compression [6], Refined Lightweight Temporal
Compression (RLTC) [7], multidimensional extension of the
LTC method [8], Direct Lightweight Temporal Compression
(DLTC) [9] and DFan [10]. These modified versions were
developed either to minimize the data reconstruction error or
improve the compression efficiency.

III. NEW VERSIONS OF THE RT-LRBTC ALGORITHM
In this study, two new versions of the RT-LRbTC

algorithm were developed. One variation of the basic RT-
LRbTC is the RT-LRbTC with 2Δt inherent latency in the new
regression line calculation (RT-LRbTC-2Δt). This version is
the same as the basic RT-LRbTC (with N = 3), but the values
used to calculate the new regression line are the last point in
the previous linear section, the first value that fell off from the
previous section, and one new measurement value. The need
to wait for one new value adds the inherent latency to 2Δt
when the information of the previous line ends, and new line
parameters are obtained. In Fig. 1, this means that in step 9,
there is a need to wait for one measurement interval and then
calculate the new regression line from the last three values.
This new version is a compromise between M-LRbTC and
RT-LRbTC; having the inherent latency between those two
algorithms.

Another variation of the basic RT-LRbTC and RT-
LRbTC-2Δt is the use of weighted linear regression instead of
ordinary linear regression. This version of the algorithm is
called RT-WLRbTC (Real-Time Weighted Linear
Regression-based Temporal Compression) with 2Δt inherent
latency (RT-WLRbTC-2Δt). Weighted linear regression (or
weighted least-squares, WLS) is used in statistics and data
analysis instead of simple linear regression when the variation
in the samples (values) is not constant. This heterogeneous
nature of the values can be addressed by WLS using
heterogeneous weights wi in the normal linear regression
equations [11]. The sum of squares of the deviation with
weights is [12]:

 𝑆𝑆𝑤𝑤 = ∑ 𝑤𝑤𝑖𝑖[𝑦𝑦𝑖𝑖 − (𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏)]2𝑛𝑛
𝑖𝑖=1 (1)

The WLS estimates of a and b (line parameters) were
obtained by minimizing (1). In this study, the idea of WLS is
utilized as some of the samples are used more than once while
calculating the linear regression to give more weight to a
specific individual value (single values used twice means
double weight). RT-WLRbTC-2Δt is similar to RT-LRbTC-
2Δt, except that the last value used to calculate the linear
regression line is used twice, thus having a weight value of 2
compared to 1 for the other two values. Hence, the
computational complexity is similar to that of the M-LRbTC
with N = 4. The main idea behind using this type of weighted
linear regression is that when the linear section ends and the
new regression line is calculated, it is expected that the
direction of the values is changing. Thus, the latest value is
expected to predict future values better than other values used
to calculate the regression line, and thus the latest value has a
larger effect on the linear regression line calculation. Different
versions of weighted linear regression can be developed and
used; however, only this one example was tested in this study.

IV. TEMPORAL COMPRESSION METHODS’ INHERENT
LATENCY

In Table I, all the presented methods are compared in the
order of the algorithm’s inherent latency. This comparison
does not consider the latency caused by the computational
time. Because the measurement interval in typical
environmental applications is rather long (minutes or even
hours in some cases), the time needed for calculations is
negligible, even with the most constrained end devices.

LTC and M-LRbTC (basic version) are not well suited for
compressing sensor data value by value in the online mode.
LTC has unpredictable inherent latency, which is dependent
on how well the values fit in the linear section. When the linear
section ends, the endpoint and the new linear section starting
point are at the same point. That information is achieved in
one measurement interval after the linear section ends. The
basic version of the M-LRbTC has an inherent latency of (N-
1)Δt in the beginning, when the algorithm waits until there are
N measurement values to be used to calculate the regression
line. The starting point line value is stored and/or sent, but it
is not known in which direction the values are moving since
this until the line ends and the end point value is stored and/or
sent. If the linear regression line parameters are sent, then the
inherent latency is constant Δt in the linear section. Only M-
LRbTCb (Table I) and the three RT-LRbTC-based algorithms
have fixed and predictable latencies. Of the presented
algorithms, RT-LRbTC has the shortest overall latency, Δt, in
the linear section, and no latency in calculating a new line. The
new versions have double inherent latency (2Δt) and no
latency in calculating a new regression line.

V. LINEARITY-BASED METHODS’ COMPRESSION
QUALITY AND ABILITY TO COMPRESS ENVIRONMENTAL

DATASETS
It was demonstrated in [13] that the average absolute

change between consecutive measurements (AC) can be used
to predict the selected linearity-based algorithm’s ability to
compress datasets (compression ratio, CR). AC is defined as:

 𝐴𝐴𝐴𝐴 = ∑ |𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖|
𝑛𝑛−1
𝑖𝑖=1

𝑛𝑛−1
 (2)

Additionally, the standard deviation (SD) of the change
between consecutive measurements can also be used to predict
the CR, but the AC provides a better estimation [13]. SD is
defined as (3):

 𝑆𝑆𝑆𝑆 = �∑ �(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)−(𝑥𝑥𝚤𝚤+1−𝑥𝑥𝚤𝚤������������)�
2𝑛𝑛−1

𝑖𝑖=1
𝑛𝑛−2

 (3)

where,

 (𝑥𝑥𝚤𝚤+1 − 𝑥𝑥𝚤𝚤�����������) = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1 (4)

TABLE I. COMPRESSION ALGORITHMS’ LATENCIES IN DIFFERENT PHASES OF COMPRESSION

Phase of the
Compression

Compression Algorithm

LTC M-LRbTCa M-LRbTCb RT-LRbTC RT-LRbTC-2Δt RT-WLRbTC-2Δt

At the beginning 0 (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt

In linear section Length of the
linear section

Length of the
linear section Δt Δt 2Δt 2Δt

Calculating new line NA (N-1)Δt (N-1)Δt 0 0 0
aM-LRbTC: The linear regression line start and endpoint values are sent.
bM-LRbTC: The linear regression line parameters are sent with the starting timestamp. The endpoint of the linear line is sent when the first value falls off from the linear segment.

The suitability of a compression algorithm depends on the
characteristics of the sensor data. Many environmental
magnitudes are quasi-linear in a short time window, and some
compression algorithms are more suitable and effective for
this type of linearly behaving data than for other types of data.
In this study, the AC and SD values of the datasets were used
to compare the datasets’ characteristics and to estimate the
compression algorithms’ ability to compress those datasets
effectively.

The common parameters used to compare different
compression algorithms are the compression ratio (CR) and
the root mean square error (RMSE). The compression ratio is
calculated as CR = (original data)/(compressed data) and the
root mean square error [14]:

 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 (5)

where vi is the raw data value and ci is the corresponding
value derived from the compressed dataset. The compression
ratio indicates how effectively the algorithm reduces the size
of the original data and is most widely used to express the
efficiency of the compression algorithm. The RMSE indicates
the compression quality. Because the methods presented in
this paper are lossy, the reconstructed data differ from the
original data. Thus, some information is lost. The RMSE
provides information about how much the data reconstructed
from the compressed data differs from the original data. The
smaller the RMSE value, the smaller is the deviation from the
original data.

A. The Selected Compression Algorithms’ Efficiency to
Compress Real Environmental Datasets
LTC, M-LRbTC, and three versions of RT-LRbTC

algorithms were tested with real datasets and compared with
each other. All tested algorithms are suitable for constrained
IoT devices. In [15] and [16], LTC and RT-LRbTC (with N
values 3 and 4) were implemented on a LoRa sensor node and
no significant energy consumption from the algorithm
calculations was discovered. It was discovered that using these
lossy compression algorithms led to significant reduction on
energy consumption and thus it can be effective solution for
lengthening the battery powered sensor node lifetime. The
energy saving was due to reduction of the wireless
transmitting periods [15], [16].

In this study, the M-LRbTC algorithm was tested using N
values of 3, 4, and 5. The RT-LRbTC algorithm was tested
with the original version and two newly developed versions:
RT-LRbTC-2Δt and RT-WLRbTC-2Δt. All algorithms were
programmed and tested using MATLAB. The datasets were
already available, and thus, this situation does not correspond
to the situation for compressing the real-time sensor data
stream. This testing situation demonstrates how the algorithm
would have compressed the data when the dataset was
collected. As the temperature at the same geological location
behaves rather similarly year by year, this testing indicates
how the algorithm could possibly compress the data in that
situation. Similar behavior at certain geological locations for
other environmental magnitudes is also expected.

The environmental magnitudes were temperature, air
pressure and wind speed. The datasets used were obtained
from the Finnish Meteorological Institute’s open data service
[17]. The datasets tested were Salla Naruska measurement
station data and Hanko Tulliniemi measurement station data.

All datasets were for the full year 2019 with 10-minute
measurement intervals. The temperature was measured in
degrees Celsius with 0.1 degrees resolution, air pressure was
measured in hPa with 0.1 hPa resolution and wind speed was
measured in 10-minute average value with 0.1 m/s resolution.

The Salla Naruska measurement station is in the eastern
part of Finnish Lapland. It is one of the coldest locations in
Finland. The Hanko Tulliniemi measurement station is in the
southernmost part of Finland, 100 m from the sea. These two
locations have very different climates. The Salla Naruska
dataset was also used in [2] but the Hanko Tulliniemi dataset
is a new experiment. In [2] LTC, M-LRbTC, and RT-LRbTC
compression ratios with different error bound values were
tested using the Salla Naruska dataset (temperature, air
pressure, and wind speed). In this study, the same compression
ratio simulations for the Salla Naruska datasets were repeated,
but the RT-LRbTC algorithm’s MATLAB version was further
developed to give the CR value calculated as only line
parameters are needed for each linear section and possible
single values (not included in any linear segment) were taken
into account. In [2] the same situation was achieved by
doubling the CR values achieved from the compressed
datasets, which included the start and end points of the linear
segments. The method in [2] gives the same values for CR
when the CR is high but gives erroneous results if the
compressed dataset also includes single values that do not
belong to linear segments. In this study, the RMSE values for
each algorithm were calculated using different error-bound
values. In addition, the CR and RMSE values were compared,
and two new algorithms were tested for each environmental
dataset.

1) Temperature Datasets
The Salla Naruska dataset contains 52 463 values and the

Hanko Tulliniemi dataset 51 961 measurement values with
10-minute measurement intervals. For the full year, the dataset
should contain 52 560 values but both datasets have some
periods with missing values. The individual missing values
and short periods with missing values in the original datasets
were linearly interpolated. Longer periods with missing values
were removed from the dataset. The temperature values in the
Salla Naruska dataset varied between -37.2 °C and +30 °C.
The temperature values in the Hanko Tulliniemi dataset varied
between -12.3 °C and +27.6 °C.

Table II presents a comparison between these two
temperature datasets. Both the AC and SD values were higher
for the Salla Naruska temperature dataset than for the Hanko
Tulliniemi dataset. It indicates a lower compression ratio for
Salla Naruska dataset.

TABLE II. TEMPERATURE DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.2077 0.1282

Standard deviation (SD) 0.3473 0.2221

The results achieved in [13] can be used to estimate the
compression ratios with error bound of 0.5 °C for the LTC and
M-LRbTC algorithms when the AC and SD values are known.
With AC values from Table II the estimation gives CR = 10.4
(Salla Naruska dataset) and CR = 15.8 (Hanko Tulliniemi
dataset) for LTC when the error bound is 0.5 °C. The real CR

values achieved in this paper were 10.2 and 14.1 respectively.
For M-LRbTC (N = 3) the estimation gives CR values 4.0 and
5.8 compared to the results achieved here which are 4.0 and
5.4 respectively. The estimations from [13] are close to the
real compression ratios achieved in this study.

Fig. 2 shows the performance results of the different
compression algorithms. Fig. 2 (a) and (b) show the
compression ratios as a function of error bound (from 0.1 to
1.0 degrees Celsius). The LTC has a superior compression
ratio compared to the linear regression-based algorithms. The
difference between the different linear-regression-based
algorithms is not very large. The compression performance
difference between M-LRbTC N = 3 and N = 4 was slightly
larger than that between N = 4 and N = 5. RT-LRbTC has the
lowest compression ratio in terms of linear lines (start and end
points), but it benefits from the fact that only one transmission
period is required for each linear line. In Fig. 2 (a) and (b), for
different RT-LRbTC (RT-LRbTC, RT-LRbTC-2Δt, and RT-
WLRbTC-2Δt) algorithms, the compression ratio values are
presented as only the line parameters are stored/sent at the
beginning of each linear line.

The new variations in RT-LRbTC (RT-LRbTC-2Δt and
RT-WLRbTC-2Δt) have a slightly better compression
performance than the basic RT-LRbTC. This can be observed
in Fig. 2 (a) and (b) for the compression ratio. In general, all
the tested compression algorithms performed better for the
Hanko Tulliniemi dataset than for the Salla Naruska dataset,
as indicated by the AC and SD values in Table II. A typical
error bound for temperature data in many applications can be

approximately ± 0.5 degrees Celsius. One possibility to
choose the error bound is to use the margin of error of the
temperature sensor, which can be found in the sensor’s data
sheet [3].

In Fig. 2 (c) and (d) the RMSE values with different error
bounds can be seen. The LTC has the largest RMSE values,
which means that the drawback of a better compression ratio
is lower compression quality. Among linear-regression-based
methods, the results are similar between them. As RT-LRbTC
has a higher compression ratio, it also has a lower compression
quality than the M-LRbTC methods. The advantage of RT-
LRbTC is its shorter latency and moderate compression ratio,
but its drawback is the larger average reconstruction error after
compression than that of M-LRbTC.

The compression quality measurements (RMSE) are
similar level with all linear regression-based algorithms, as
can be seen in Fig. 2 (c) and (d). RT-WLRbTC-2Δt does not
show any better performance than RT-LRbTC-2Δt in any
measurements for these temperature datasets. In Fig. 2 (e) and
(f), the RMSE values are compared in terms of the
compression ratio. In this comparison, the LTC has the best
performance, even though the previous comparisons in (c) and
(d) indicate a lower compression quality. The LTC benefits
from its superior compression ratio compared to the other
tested methods.

2) Air Pressure Datasets
The same algorithms were tested for the air pressure

datasets. The datasets are listed in Table III. The
characteristics of both datasets were very similar, indicating

Fig. 2. Compression algorithms’ performance for temperature datasets

very similar behavior for both datasets. There was only a small
difference between the AC and SD values. The air pressure
values in the Salla Naruska dataset varied between 967.2 hPa
and 1039.5 hPa. In Hanko Tulliniemi dataset the values were
between 970.5 hPa and 1043.1 hPa.

TABLE III. AIR PRESSURE DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.0856 0.0836

Standard deviation (SD) 0.1234 0.1249

In Fig. 3, all the results for compressing the two tested air
pressure datasets are shown. Both datasets are full-year
datasets with 10-minute measurement intervals.

As shown in Fig. 3 (a) and (b), the compression ratios were
significantly higher than for the temperature data (Fig. 2).
These are not directly comparable, but as both magnitudes are
measured with 0.1 (degree and hPa) resolution, the error
bounds of 0.1 – 1.0 can thus be compared to each other
sufficiently. In general, the air pressure data changes rather
slowly; thus, it is well suited for linearity-based compression
algorithms. The AC and SD values in Table III are
significantly lower than those for the temperature datasets in
Table II, thus indicating better compression performance.
From the results obtained in [13] it is possible to estimate the
compression ratios for the LTC and M-LRbTC algorithms.
The data from [13] estimated the compression ratio with 0.5

hPa error bound for LTC to be 27.9 for the Salla Naruska
dataset and 28.3 for the Hanko Tulliniemi dataset. The results
from MATLAB simulations provided CR values 29.6 for the
Salla Naruska dataset and 29.8 for the Hanko Tulliniemi
dataset. These results are very close to the estimations.

The results for RT-LRbTC-2Δt and RT-WLRbTC-2Δt
were very close to the RT-LRbTC values in terms of the
compression ratio (Fig. 3 (a) and (b)). All linear regression-
based algorithms are very close to each other in terms of the
quality metrics (RMSE), as can be seen in Fig. 3 (c) and (d).
Again, the LTC has a superior compression ratio but also the
largest average construction error. The difference between the
various linear regression-based algorithms is small in terms of
the quality metrics and compression ratio. The three different
RT-LRbTC algorithms presented the best compression
performance among the linear regression-based algorithms. In
Fig. 3 (e) and (f), the RMSE values of the different algorithms
are compared in terms of compression ratio. The performance
order between the algorithms is quite similar to that of the
temperature data, as seen previously.

3) Wind Speed Datasets
The two wind speed datasets have different characteristics.

As the measurement stations are located in very different
places, one close to the sea and the other in Lapland in the
lowland, the wind conditions are different. The AC and SD
values are listed in Table IV. The AC and SD values were
higher for the Hanko Tulliniemi dataset, which indicates
lower compression ratios for that dataset. The wind speed was
measured as 10-minute average values. Otherwise, the wind
speed is gusty if measured in instantaneous values, and thus,

Fig. 3. Compression algorithms’ performance for air pressure datasets

it does not exhibit linear behavior. The values in the Salla
Naruska dataset were 0 m/s - 9.3 m/s. The values in the Hanko
Tulliniemi dataset were 0 m/s - 21.8 m/s.

TABLE IV. WIND SPEED DATASETS

 Salla Naruska Hanko Tulliniemi
Number of values 52 463 51 961

Average change (AC) 0.2844 0.4188

Standard deviation (SD) 0.4125 0.5917

The compression ratios for the Salla Naruska dataset are
significantly higher than those for the Hanko Tulliniemi
dataset, as can be seen in Fig. 4 (a) and (b). For example, LTC
with error bound 0.5 m/s achieves CR = 5.54 for Salla Naruska
dataset and CR = 3.98 for Hanko Tulliniemi dataset. The
estimations obtained from the data in [13] provide the
compression ratio estimations of 5.5 for the Salla Naruska
dataset and 3.6 for Hanko Tulliniemi dataset for LTC with the
same error bound. These estimations were close to the actual
compression ratios achieved. The estimations for M-LRbTC,
N = 3 give CR = 2.7 for Salla Naruska data and CR = 2.1 for
Hanko Tulliniemi data. The MATLAB simulation yielded the
same values. The compression ratios are clearly higher for the
Salla Naruska dataset than for the Hanko Tulliniemi dataset,
as indicated by the AC and SD values of the datasets. RT-
LRbTC-2Δt and RT-WLRbTC-2Δt exhibited the higher CR
values compared with the other linear regression-based
methods.

The RMSE results are shown in Fig. 4 (c) and (d). The
performance results with these quality measurements were at
the same level for each linear-regression-based method. The

differences were very limited. LTC has a significantly lower
compression quality (higher RMSE), as can be seen in Fig. 4
(c) and (d). The different characteristics of the datasets did not
appear to affect the quality metrics. The RMSE results were
very similar for both the datasets. When comparing the RMSE
values as a function of compression ratio (Fig. 4 (e) and (f)),
the performances of the different algorithms differ less from
each other than with temperature and air pressure datasets.

The new algorithms, RT-LRbTC-2Δt and RT-WLRbTC-
2Δt, showed better overall performance than the other linear
regression-based algorithms for wind speed datasets. Thus,
these new algorithms are potential methods for compressing
wind-speed data if the additional inherent latency is
acceptable.

VI. SUMMARY OF THE RESULTS
LTC had the best compression efficiency for all datasets,

but at the same time, it had the largest RMSE values with a
certain error bound. The M-LRbTC algorithm benefits from
increasing the N value from 3 to 4 or 5; however, it makes the
algorithm more complex and increases the inherent latency.
The new versions (RT-LRbTC-2Δt and RT-WLRbTC-2Δt)
have slightly better compression performance than RT-
LRbTC. These new algorithms have the same benefit as the
RT-LRbTC in that only one transmitting period is needed for
each linear segment. The weighted linear regression did not
improve the compression performance compared with RT-
LRbTC-2Δt. Among the tested algorithms, RT-LRbTC is the
best algorithm if a short inherent latency is required, as shown
in Table I. If the predicted latency is required, then different
versions of RT-LRbTC or M-LRbTC (when regression line
parameters are sent) are suitable algorithms. LTC has superior
compression performance, but unpredictable latency; thus, it

Fig. 4. Compression algorithms’ performance for wind speed datasets

is not well suited for online data stream compression or near
real-time applications. With a certain error bound, the LTC
had the largest RMSE values, and thus had the lowest
compression quality. Linear regression-based algorithms have
very similar RMSE values, and thus have a similar
performance in terms of compression quality. The two new
algorithms proved to be suitable for compressing online
environmental sensor data streams with a predictable but
slightly longer inherent latency than the original RT-LRbTC.

VII. CONCLUSIONS
Different linearity-based sensor data compression

algorithms were presented, and their efficiency to compress
different environmental microclimate datasets was tested with
real datasets. The environmental magnitudes tested were
temperature, air pressure and wind speed. Algorithms were
compared using the compression ratio (CR) and quality
measurements as the root mean square error (RMSE). Inherent
latency was used as a feature to compare the ability of
different algorithms to compress data in the online mode.

The datasets used were real datasets acquired from the
Finnish Meteorological Institute’s Open Data Service. The
datasets were used retrospectively and not in the online mode.
Thus, the dataset characteristics can be used to compare the
compression results of different compression algorithms. The
datasets were measurement values from the year 2019, but the
characteristics of those datasets can be used to predict the
performance of different algorithms in the future in that
measurement station and measurement setup. In different
places (microclimates), different magnitudes have a behavior
typical for that place. Thus, the available dataset for that
specific location can be used to predict the characteristics of
future datasets and thus predict the performance of the
different algorithms.

Two new versions of the RT-LRbTC are presented in this
paper. These new versions were tested and compared with
other algorithms. LTC has a superior compression ratio
compared to other methods but as a disadvantage, LTC has
unpredictable inherent latency. The quality measurements
demonstrate that the LTC also has the largest reconstruction
error when a certain error bound is used. The quality
measurements between the different versions of M-LRbTC
and RT-LRbTC are very close to each other.

The new versions of the RT-LRbTC algorithm (RT-
LRbTC-2Δt and RT-WLRbTC-2Δt) present better
compression ratios than the basic version of the RT-LRbTC,
but at the cost of a larger inherent latency. In addition, the
quality measurements are slightly better for the new versions.
Using weighted linear regression to calculate the regression
line, weighting the last value used to calculate the line, did not
yield any better results than the regular linear regression line.
Thus, it only adds the computational complexity of the
compression algorithm, without any significant benefits.

All the presented and tested linearity-based compression
algorithms are very simple and thus suitable for use in
constrained wireless sensor nodes to reduce the overall energy
consumption and extend the battery lifetime. These
compression methods can significantly reduce the number of
wireless transmission periods and, consequently, lower the
energy consumption of the sensor node.

REFERENCES
[1] O. Väänänen and T. Hämäläinen, “Compression Methods for

Microclimate Data Based on Linear Approximation of Sensor Data,”
NEW2AN 2019, Lecture Notes in Computer Science, vol 11660.
Springer, Cham. https://doi.org/10.1007/978-3-030-30859-9_3

[2] O. Väänänen and T. Hämäläinen, "Sensor Data Stream on-line
Compression with Linearity-based Methods," 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), 2020, pp. 220-225,
doi: 10.1109/SMARTCOMP50058.2020.00049.

[3] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow and D.
Estrin, "Lightweight temporal compression of microclimate datasets
[wireless sensor networks]," 29th Annual IEEE International
Conference on Local Computer Networks, 2004, pp. 516-524, doi:
10.1109/LCN.2004.72.

[4] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan and W. A. Coberly,
"ECG data compression techniques-a unified approach," in IEEE
Transactions on Biomedical Engineering, vol. 37, no. 4, pp. 329-343,
April 1990, doi: 10.1109/10.52340.

[5] D. Parker, M. Stojanovic, and C. Yu, “Exploiting temporal and spatial
correlation in wireless sensor networks,” 2013 Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, 2013, pp. 442-
446, doi: 10.1109/ACSSC.2013.6810315.

[6] J. Azar, A. Makhoul, R. Darazi, J. Demerjian, and R. Couturier, “On
the performance of resource-aware compression techniques for vital
signs data in wireless body sensor networks,” 2018 IEEE Middle East
and North Africa Communications Conference (MENACOMM),
Jounieh, 2018, pp. 1-6, doi: 10.1109/MENACOMM.2018.8371032.

[7] O. Sarbishei, “Refined Lightweight Temporal Compression for
Energy-Efficient Sensor Data Streaming,” 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp.
550-553, doi: 10.1109/WF-IoT.2019.8767351.

[8] B. Li, O. Sarbishei, H. Nourani, and T. Glatard, “A multi-dimensional
extension of the Lightweight Temporal Compression method,” 2018
IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, 2018, pp. 2918-2923, doi: 10.1109/BigData.2018.8621946.

[9] L. Klus et al., “Direct Lightweight Temporal Compression for
Wearable Sensor Data,” In IEEE Sensors Letters, vol. 5, no. 2, pp. 1-4,
Feb. 2021, doi: 10.1109/LSENS.2021.3051809.

[10] S. Lu, Q. Xia, X. Tang, X. Zhang, Y. Lu and J. She, "A Reliable Data
Compression Scheme in Sensor-Cloud Systems Based on Edge
Computing," in IEEE Access, vol. 9, pp. 49007-49015, 2021, doi:
10.1109/ACCESS.2021.3068753.

[11] W. W. Piegorsch, Statistical Data Analytics: Foundations for Data
Mining, Informatics, and Knowledge Discovery. Chichester, West
Sussex: Wiley, 2015.

[12] S. Chatterjee and A. S. Hadi, Regression Analysis by Example, John
Wiley & Sons, 2012.

[13] O. Väänänen, M. Zolotukhin, and T. Hämäläinen, “Linear
Approximation Based Compression Algorithms Efficiency to
Compress Environmental Data Sets,” In Web, Artificial Intelligence
and Network Applications. WAINA 2020. Advances in Intelligent
Systems and Computing, vol 1150. Springer, Cham. doi: 10.1007/978-
3-030-44038-1_11

[14] N. Q. V. Hung, H. Jeung, and K. Aberer, “An Evaluation of Model-
Based Approaches to Sensor Data Compression,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 11, pp.
2434-2447, Nov. 2013, doi: 10.1109/TKDE.2012.237.

[15] O. Väänänen and T. Hämäläinen, "LoRa-Based Sensor Node Energy
Consumption with Data Compression," 2021 IEEE International
Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT),
2021, pp. 6-11, doi: 10.1109/MetroInd4.0IoT51437.2021.9488434.

[16] O. Väänänen and T. Hämäläinen, "Efficiency of temporal sensor data
compression methods to reduce LoRa-based sensor node energy
consumption", In Sensor Review, Vol. 42 No. 5, pp. 503-516,
2022, https://doi-org.ezproxy.jyu.fi/10.1108/SR-10-2021-0360

[17] Finnish Meteorological Institute’s open data–service. [Online]
Available: https://en.ilmatieteenlaitos.fi/open-data

	Lightweight Methods to Reduce the Energy Consumption of Wireless Sensor Nodes with Data Compression and Data Fusion
	ABSTRACT
	TIIVISTELMÄ (ABSTRACT IN FINNISH)
	ACKNOWLEDGEMENTS
	FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 Introduction
	2 Related Work
	2.1 Methods to Reduce the IoT Sensor Node’s Energy Consumption
	2.2 Lightweight Temporal Compression Methods for Sensor Data

	3 Motivation and Research Problem
	4 Overview of Included Articles
	4.1 Article I: Requirements for Energy Efficient Edge Computing: A Survey
	4.2 Article II: Predictive pumping based on sensor data and weather forecast
	4.3 Article III: Compression Methods for Microclimate Data Based on Linear Approximation of Sensor Data
	4.4 Article IV: Linear Approximation Based Compression Algorithms Efficiency to Compress Environmental Data Sets
	4.5 Article V: Sensor Data Stream On-line Compression with Linearity-based Methods
	4.6 Article VI: LoRa-Based Sensor Node Energy Consumption with Data Compression
	4.7 Article VII: Efficiency of temporal sensor data compression methods to reduce LoRa-based sensor node energy consumption
	4.8 Article VIII: Linearity-based Sensor Data Online Compression Methods for Environmental Applications

	5 Discussion and Conclusions
	Yhteenveto (Summary in Finnish)
	References
	ORIGINAL PAPERS
	REQUIREMENTS FOR ENERGY EFFICIENT EDGE COMPUTING: A SURVEY
	PREDICTIVE PUMPING BASED ON SENSOR DATA AND WEATHER FORECAST
	I. Introduction
	II. Combining sensor data and weather forecasts in IoT system
	III. Smart pumping system
	IV. Predictive pumping algorithm based on sensor data and weather forecast
	V. Results
	VI. Conclusions and future work
	References

	COMPRESSION METHODS FOR MICROCLIMATE DATA BASED ON LINEAR APPROXIMATION OF SENSOR DATA
	1 Introduction
	2 Lightweight Compression Methods for Sensor Data
	2.1 Lossy Methods and Lossless Methods
	2.2 Lossy Compression Algorithms Based on Linear Approximation
	2.3 Transform Based Compression Methods

	3 Testing the Algorithms with Real Microclimate Data
	4 Conclusions and Future Work
	References

	LINEAR APPROXIMATION BASED COMPRESSION ALGORITHMS EFFICIENCY TO COMPRESS ENVIRONMENTAL DATA SETS
	SENSOR DATA STREAM ON-LINE COMPRESSION WITH LINEARITY-BASED METHODS
	LORA-BASED SENSOR NODE ENERGY CONSUMPTION WITH DATA COMPRESSION
	EFFICIENCY OF TEMPORAL SENSOR DATA COMPRESSION METHODS TO REDUCE LORA-BASED SENSOR NODE ENERGY CONSUMPTION
	LINEARITY-BASED SENSOR DATA ONLINE COMPRESSIONMETHODS FOR ENVIRONMENTAL APPLICATIONS

