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ABSTRACT 

Väänänen, Olli 
Lightweight Methods to Reduce the Energy Consumption of Wireless Sensor 
Nodes with Data Compression and Data Fusion 
Jyväskylä: University of Jyväskylä, 2023, 53 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 645) 
ISBN 978-951-39-9570-6 (PDF) 

The Internet of Things (IoT) has become part of everyday life in the last 10 years, 
and the intense enthusiasm for it has dissipated. Although the term “Internet of 
Things” is not as present at the moment, its meaning has not disappeared, but 
rather the reverse. Internet access devices are now ubiquitous, and the number 
of these devices is still increasing sharply. Each device with an internet connec-
tion can be considered an IoT device. Most of these devices include a sensor or 
sensors and a wireless connection to the internet. Due to the large number of de-
vices and their location everywhere, IoT devices are often battery powered. Bat-
tery operation places demands on the power consumption of devices, as replac-
ing or charging batteries is difficult and expensive when there are a large number 
of devices and when they are located in a wide area. A typical sensor application 
is a device for monitoring an environment that transmits data measured by sen-
sors wirelessly at regular intervals. The power consumption of such a device 
should be so low that the device can run on a battery for up to years without 
replacing or recharging the battery. 

This study focused on exploring and developing sensor data compression 
methods that are as light as possible and suitable for sensor nodes with light 
computing power. The developed methods are able to compress sensor data in 
real-time as new measurement values come in. Thus, the amount of data that can 
be transmitted wirelessly is reduced without sacrificing too much data accuracy. 
Wireless data transmission is known to be the single largest power consumer in 
such a sensor node. In addition, by combining other existing data or data that can 
be openly obtained from the internet, the amount of data measured by IoT 
devices can be reduced. It is possible to lengthen the measurement interval or 
reduce the number of sensor nodes themselves. 

In this study, compression methods based on linear regression were 
developed, especially for compressing data for measuring environmental 
quantities. The methods developed proved to be simple, lightweight, and well 
suited for use in sensor nodes. The methods were shown to allow for a clear 
reduction in the energy consumption of the sensor node and thus an increase in 
its lifetime. 

Keywords: Internet of Things, sensor data, compression algorithms, embedded 
systems, edge computing 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Väänänen, Olli 
Kevyet menetelmät langattomien anturisolmujen energiankulutuksen vähentä-
miseksi datan pakkaamisen ja datojen yhdistämisen avulla 
Jyväskylä: Jyväskylän yliopisto, 2023, 53 p. (+artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 645) 
ISBN 978-951-39-9570-6 (PDF) 

Esineiden internetistä on tullut osa jokapäiväistä elämää kymmenen viime vuo-
den aikana, mutta samalla suurin innostus aiheeseen on laantunut. Vaikka termi 
esineiden internet ei ole yhtä paljon pinnalla, sen merkitys ei ole kadonnut mi-
hinkään, vaan päinvastoin. Internet-laitteita on nyt kaikkialla, ja määrä kasvaa 
edelleen jyrkästi. Jokainen laite, jolla on Internet-yhteys, voidaan laskea kuulu-
vaksi esineiden internet -laitteisiin. Suurin osa näistä laitteista sisältää anturin tai 
antureita ja langattoman yhteyden Internetiin. Johtuen laitteiden suuresta mää-
rästä ja niiden sijainnista kaikkialla, esineiden internet -laitteet ovat usein akku-
käyttöisiä. Akun käyttö asettaa vaatimuksia laitteiden energiankulutukselle, 
koska akkujen vaihtaminen tai lataaminen on vaikeaa ja kallista, jos laitteita on 
paljon ja ne sijaitsevat laajalla alueella. Tyypillinen anturisovellus on ympäristön 
seurantaan tarkoitettu laite, joka lähettää antureiden mittaamia tietoja langatto-
masti säännöllisin väliajoin. Tällaisen laitteen energiankulutuksen tulisi olla niin 
alhainen, että laite voi toimia akulla jopa vuosia vaihtamatta tai lataamatta akkua. 

Tässä tutkimuksessa keskityttiin tutkimaan ja kehittämään anturidatan 
pakkausmenetelmiä, jotka ovat mahdollisimman kevyitä ja soveltuvat alhaisen 
laskentatehon omaaviin anturisolmuihin. Kehitetyt menetelmät pystyvät pak-
kaamaan anturidataa reaaliajassa, sitä mukaa kuin uusia mittausarvoja tulee. 
Siten langattomasti lähetettävän datan määrää on mahdollista vähentää menet-
tämättä kuitenkaan liikaa datan tarkkuutta. Langattoman tiedonsiirron tiedetään 
olevan suurin yksittäinen energiankuluttaja tällaisessa anturisolmussa. Lisäksi 
yhdistämällä muita olemassa olevia tietoja tai avoimesti Internetistä saatavia 
tietoja, esineiden internet -laitteiden mittaaman datan määrää voidaan vähentää. 
Mittausväliä on mahdollista pidentää tai itse anturisolmujen määrää vähentää. 

Tutkimuksessa kehitettiin lineaariseen regressioon perustuvia pakkausme-
netelmiä, erityisesti ympäristösuureiden mittausdatalle. Kehitetyt menetelmät 
osoittautuivat yksinkertaisiksi, kevyiksi ja soveltuivat hyvin käytettäväksi antu-
risolmuissa. Menetelmien osoitettiin mahdollistavan anturisolmun energianku-
lutuksen selkeän vähenemisen ja siten sen käyttöiän pidentämisen. 

Avainsanat: esineiden internet, anturidata, pakkausalgoritmit, sulautetut järjes-
telmät, reunalaskenta 
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The increase in Internet of Things (IoT) devices has brought the edge computing 
paradigm to focus in recent years. Estimates of the number of IoT devices 
connected to the network vary significantly. In 2021, 35 billion IoT devices were 
estimated to have been installed worldwide, and in 2025, more than 75 billion 
devices will be installed in total [1]. There is the other estimation that in 2025, 37 
billion industrial IoT devices will be installed in total, but this number does not 
include consumer IoT devices [2]. These estimations seem to be slightly 
exaggerated as there are new, more modest estimations. In [3], it was estimated 
that there were 7.6 billion active IoT devices at the end of 2019, and this number 
will increase to 24.1 billion by 2030. In 2021, there were 12.2 billion connected IoT 
devices globally, and it was estimated to increase to 14.4 billion devices by the 
end of 2022 [4]. The same source estimated that in 2025, there would be 27 billion 
connected IoT devices globally. Overall, it is difficult to estimate the actual 
number of IoT devices, but the general view is that the number of IoT devices 
will increase significantly in the following years. This means a significant rise in 
market size. The IoT market size is estimated to be worth USD 384.7 billion in 
2021, and it will increase to 2,464.26 billion by 2029 [5].  

Most IoT devices are connected wirelessly to the network; thus, the need for 
reliable wireless connections is crucial. Numerous wireless technologies and 
protocols for use in IoT devices are available, but the drawback of wireless 
connections is the significant need for electrical energy for data transmission. 
Wireless communication is known as the major energy consumer in wireless 
sensor networks [6]. IoT devices are usually battery powered with limited energy 
resources. Many wireless technologies have been developed, particularly with 
low energy consumption in mind. Suitable low-energy-consumption wireless 
technologies for IoT devices include LoRa and SigFox [7]. Minimizing the 
wireless sensor node or IoT device energy consumption requires paying attention 
to every stage of device design and operation [6]. 

Edge computing is an effective and significant method to solve the 
problems and challenges of a large number of IoT devices produce for the 
reliability of wireless connections. Edge computing can also help minimize the 
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energy consumption of IoT devices, thus increasing the lifetime of IoT devices. 
This is due to the reduction of the data needed to be transmitted via wireless 
connection. Edge computing does not mean an automatic savings in energy 
consumption, but when it is properly used, it is possible to achieve a reduction 
in energy consumption. Edge computing as a term is rather unclear, and it is 
sometimes described as the same as, or at least very close to, fog computing. 
Many sources define the term edge as an IoT end device, such as a sensor node, 
and the term fog as the next level from the end device in a hierarchical placement. 
This ‘next level’ refers to, for example, network devices such as gateways, base 
stations, and routers [8,9]. Edge computing means that at least part of the 
calculations and decision making takes place in the edge device; thus, not all raw 
data necessarily need to be transmitted via the network. This type of approach 
reduces the amount of data required for transmission via a wireless connection, 
thus also helping to reduce energy consumption in the end device. However, 
edge computing may require more calculations in the edge device, thus 
increasing energy consumption in some cases. 

The largest energy consumer in wireless edge devices is the radio 
transmitter when it is in idle mode or transmitting [10]. The edge computing 
paradigm has been proven to be a suitable solution for maximizing the lifetime 
of battery powered IoT end devices [11]. IoT sensor nodes are usually 
widespread in the environment, and the number of nodes can be large. Thus, it 
is not suitable to power nodes from a public electricity network; instead, the 
nodes must be powered by batteries or through energy harvesting. This type of 
situation is quite typical, for example, in different agricultural applications in 
which IoT nodes are located in the countryside and, possibly, in fields. The 
replacement of empty batteries for numerous IoT nodes incurs a significant cost. 
Therefore, edge computing, when used correctly, is a cost-effective solution. A 
simple edge computing method to reduce the energy consumption of an IoT 
sensor node is to compress the node’s raw sensor data and thus reduce the overall 
amount of data needed to transmit over a wireless connection [12]. It can also 
reduce the number of transmission cycles. Thus, the radio transmitter can be in 
sleep mode for a longer time. 

Edge computing also significantly contributes to ensuring security and 
protecting privacy. If the raw data are sensitive, decision making at the edge 
removes the need to send sensitive data via the public internet. Such sensitive 
sensor data can be personal health data. However, it also gives rise to new 
security concerns. IoT edge devices can be connected to a large number of other 
IoT devices through traditional sensor networks. These IoT devices can be 
heterogeneous in nature, have limited resources, and utilize different routing 
protocols [13,14]. Some of these devices can have security vulnerabilities, and it 
is difficult to guarantee the security of all these devices. 

One significant benefit of edge computing is shorter latency [13]. Latency is 
also more predictable and stable if the calculations and decision making are 
performed in close proximity to the edge device. Some safety-critical applications 
require short latency, which can be achieved with edge computing. Solutions that 
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are safety critical and require short latency include various smart traffic 
applications, such as connected vehicles and even autonomous vehicles, in the 
future. 
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In this chapter, a review is given to provide readers with some background 
material on the methods used to reduce the sensor node’s energy consumption, 
mainly with simple compression methods. 

2.1 Methods to Reduce the IoT Sensor Node’s Energy 
Consumption 

Maximizing the IoT sensor node lifetime requires minimizing energy 
consumption in every operating phase of the device and choosing optimal 
hardware and network solutions. A typical wireless IoT sensor node architecture 
can be divided into the following subsystems: computing system 
(microcontroller/microprocessor, MCU), wireless communication subsystem 
(radio), sensing subsystem, and power supply subsystem [6]. 

The power performance of different MCUs has been studied widely, and 
several wireless communication technologies for constrained IoT devices have 
been developed, such as NB-IoT, LoRa, and SigFox [6,7,15]. Many IoT wireless 
networks operate at a sub-1 GHz frequency to achieve broader network coverage 
and low power consumption [16]. At sub-1 GHz frequencies, the signal is less 
sensitive to obstacles such as walls and buildings. These network technologies 
specialized for the IoT are called low-power wide-area networks (LPWANs), and 
they utilize star topology [17,18]. LPWANs allow communication over a 
kilometer distance with low energy consumption, but they have the 
disadvantage of a low data rate [18]. Therefore, these technologies are suitable 
for sensing devices that are located in a wide area and are battery powered. 

A sensing subsystem is a vital part of an IoT device [19]. An IoT sensor node 
can include several sensors that all consume energy. This energy consumption 
can become a significant problem for IoT devices that have limited energy 
resources. Two possible solutions for this energy consumption problem are 
energy harvesting and energy saving [19]. As energy harvesting is rather low and 

2 RELATED WORK 



 
 

15 
 

weak power supply, it requires different energy-saving techniques. Energy 
saving techniques attempts to optimize the energy consumption of IoT devices. 
These methods can be utilized at different levels of device operation [19]. As the 
number of sensors increases in one IoT device, it results in a significant increase 
in energy consumption. Thus, one method to reduce sensors’ energy 
consumption is to measure periodically and to set sensors in sleep mode between 
measurement periods, if possible. 

A power supply subsystem requires the use of energy-efficient components 
for energy saving [20]. Energy-efficient components and designs use switched 
power supplies instead of linear regulators. Switched power supplies are more 
challenging to design because they can cause electromagnetic disturbances in the 
device itself and in the environment [21]. 

Therefore, energy consumption is affected by the physical sensors, central 
processing unit hardware, wireless network, hardware platform and all its 
solutions, and computation model [19]. Examples of software solutions for 
reducing energy consumption include the efficient use of MCU operating modes, 
such as sleep mode, and pre-processing data to reduce the need for transmission. 
Data pre-processing can be in the lightest mode only to filter erroneous or 
redundant data. Typically, data pre-processing includes data compression and 
some encryption. Data compression is used to reduce the amount of data needed 
to transmit; thus, it can reduce the energy consumption of the IoT device [22]. 
Data encryption is essential for security and privacy, but it usually requires more 
complex calculations, thus deriving higher energy consumption. The increase in 
energy consumption due to encryption is dependent on the type of encryption 
algorithm used. There are available encryption schemes that do not significantly 
affect end-node energy consumption [23,24]. 

Compression techniques can be broadly categorized into two categories: 
those that result in loss of data (lossy) and those that do not (lossless) [25]. 
Lossless compression does not lose any information. The original data can be 
recovered but at the cost of a lower Compression Ratio (CR) and more complex 
calculations. Thus, lossy compression algorithms are recommended for sensor 
data because sensor data are not accurate and sensor nodes are computationally 
constrained [26]. Lossy compression methods can be divided into transform-
based and time domain methods. Well-known transform-based lossy 
compression methods include Discrete Cosine Transform (DCT), Discrete 
Fourier Transform (DFT), and Discrete Wavelet Transform (DWT) [27,28]. Time 
domain methods include data linearity-based compression techniques, such as 
Lightweight Temporal Compression (LTC), Piecewise Constant Approximation 
(PCA), Adaptive PCA (APCA), and PieceWise Linear Histogram (PWLH) [29,30]. 

Prediction-based methods have been widely used and have proven 
effective for image compression [31]. Prediction-based methods for sensor data 
have been also proposed [32,33]. There are both lossy and lossless methods. In 
[34], a lossy predictive coding -based compression algorithm for real-time data 
has been proposed and verified to be efficient. Although these prediction-based 
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methods are effective, they are more complex than linearity-based methods. 
Therefore, they are not the subject of this dissertation. 

2.2 Lightweight Temporal Compression Methods for Sensor Data 

Various data compression methods have been developed for decades. Some 
compression algorithms are suitable for environmental data and some for 
physiological signals in wireless body area networks (WBAN) [35,36]. Some 
compression algorithms are more complex than others, and there is a significant 
difference in their CRs. The ability of compression methods to compress data also 
depends on the type of data it is used to compress [37,38]. Because IoT sensor 
nodes are often computationally limited and have limited energy resources, the 
compression methods used must be computationally light. Most compression 
algorithms are unsuitable for constrained sensor nodes with limited energy 
resources [39]. In addition, many healthcare applications in WBAN require real-
time compression of one sample at a time [40]. The methods presented in this 
study are simple and suitable for constrained sensor nodes. 

Typically, sensors measure environmental magnitudes such as temperature, 
humidity, air pressure, and solar radiation. These types of environmental 
magnitudes behave linearly on a short time scale [29]. There are simple and light 
compression algorithms suitable for this type of data. Most simple algorithms are 
based on data linearity. For example, LTC is an efficient method for compressing 
environmental data. It adapts and finds linear sections from consecutively 
measured values with a certain allowed error bound [29]. Thus, LTC and most 
other simple methods are called lossy methods. Lossy methods lose some 
information, and the reconstructed data after compression differ from the 
original data. The error bound represents the maximum allowable loss. Many 
simple linearity-based algorithms use linear regression or other simple methods 
to find the best-suited linear sections from measured data [30]. These linearity-
based lossy compression methods are known as time-domain compression 
algorithms. The other category of compression algorithms is transform-based 
algorithms. In these algorithms, data are transformed into a different domain in 
which the data characteristics are represented by a limited number of coefficients 
obtained using a different transform method [37]. Well-known transform-based 
methods include DFT and DCT. 

The effectiveness of a compression algorithm is evaluated based on three 
metrics:  

1. Compression Ratio (CR), 
2. Computational Complexity, and 
3. Root Mean Square Error (RMSE) [30]. 

Most methods presented in the literature are suitable for retrospectively 
compressing data. If the dataset is already available, it is possible to find the best 
possible solution for compressing the dataset. For example, linearity-based 
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methods can be used to find the best-suited, linearly behaving periods in a 
dataset to fit different linear models. This type of approach is not suitable for 
compressing real-time sensor data streams. If the sensor data stream is required 
to compress in real-time, then the inherent latency of the compression algorithm 
is a significant parameter [41]. 

Methods that are not suitable for compressing sensor data streams in real-
time mode can be used in periodic sensor networks (PSN), in which data are 
always sent periodically to the sink [42,43]. The sending frequency describes the 
inherent latency of a PSN. In addition, there is always time required for algorithm 
computation and transmission delay. The data collected between the sending 
periods can be treated as any dataset. The compression algorithm can be used to 
compress the dataset, and only the compressed data are sent to the sink. This type 
of method can significantly reduce the amount of data but does not decrease the 
required transmission periods. Transmission periods are described in PSN, and 
they also describe the latency and suitability for near-real-time applications. Thus, 
the ability of the algorithm to reduce energy consumption in the PSN sensor node 
is limited to reducing the amount of data needed to send in one sending period. 

Simple linearity-based methods include PCA, poor man’s compression, 
APCA, PWLH, slide filter (SF), and LTC [29,30,44]. In the descriptions of the 
compression algorithms, the original sensor data are presented as data pairs  

𝑆𝑆 = 〈(𝑣𝑣1, 𝑡𝑡1), (𝑣𝑣2, 𝑡𝑡2), … , (𝑣𝑣𝑛𝑛, 𝑡𝑡𝑛𝑛)〉, 

where 𝑣𝑣𝑖𝑖  is the measured sensor value (data point), and 𝑡𝑡𝑖𝑖  is the timestamp. 
Normally, the sensor data are gathered with a constant measurement frequency 
(measurement interval, ∆𝑡𝑡), creating a dataset represented by S. 

The methods PCA, APCA, PWLH, and LTC are briefly described next. 

Piecewise Constant Approximation 

In PCA, the entire dataset, S, is divided into fixed-length segments. This method 
is similar to piecewise aggregate approximation. The algorithm was explained in 
[30]. The length of each segment is 𝑤𝑤. The algorithm compares the largest and 
smallest values in each segment. If the difference between the largest and 
smallest values is smaller than two error bounds (2 ∙ 𝜀𝜀), then all the data points 
in that segment are presented with one value, which is the midpoint between the 
highest and smallest values, 

𝑐𝑐𝑖𝑖 =
(𝑣𝑣max + 𝑣𝑣min)

2
 

Therefore, each raw data value is within an error bound distance from the 
compressed value. If the data values do not fit the error bound limits, then the 
original data values remain in the compression output. The compressed data are 
presented as 

PCA(𝑆𝑆) = 〈(𝑐𝑐1,𝑓𝑓1), (𝑐𝑐2,𝑓𝑓2), … , (𝑐𝑐𝑘𝑘, 𝑓𝑓𝑘𝑘)〉, 
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where 𝑓𝑓𝑖𝑖  is a Boolean value indicating that the value 𝑐𝑐𝑖𝑖  is a constant value 
(compressed) or a raw value (not compressed due to values falling out from error 
bound limits) [30]. 

An example of PCA algorithm results is shown in Figure 1. The data are real 
temperature measurement data with a 10-min measurement interval. The 
temperature is measured in degrees Celsius, with a resolution of 0.1 degrees. The 
raw data contain 30 temperature sensor values (blue circles). The error bound 
used in PCA compression is 0.5 ℃, and the length of segment 𝑤𝑤 is 5 measurement 
values. In Figure 1, the solid constant five-measurement long lines present the 
compressed constant value. Thus, the first five original values (timestamps 1–5) 
are presented with one value, which is −7.1 ℃. From 6 to 10, the constant value 
is −7.85°. The values between 11 and 15 vary more than two error bounds in total. 
Therefore, these values do not fit in the constant segment and are presented as 
original values. In this example, the original dataset contained 30 temperature 
values, and with a PCA algorithm with a 0.5 ℃ error bound, the compressed 
dataset contains 14 values and 14 Boolean 𝑓𝑓𝑖𝑖 values. In addition, the compressed 
dataset can also include the timestamps, but it is also possible to derive the 
timestamps from the compressed data, as the length of the constant segments is 
known. 

FIGURE 1  PCA for the test dataset 

The PCA algorithm is simple but also limited in its compression efficiency. 
This algorithm is suitable if the entire dataset or at least one fixed-segment length 
is available. Segment length describes the algorithm’s inherent latency and 
theoretical maximum CR. The PCA algorithm is appropriate for data that are 
almost constant or change only slightly. If the values change rapidly in one 
direction, as is often the case with ambient temperature, the method is not 
effective. The theoretical maximum for CR is 𝑤𝑤  because if every value in the 
dataset fits into one of the fixed linear sections (length of 𝑤𝑤), then 𝑛𝑛/𝑤𝑤 linear 
sections exist (𝑛𝑛 is the number of data points in the original dataset), and thus the 
number of values is the same in the compressed dataset. Subsequently,  
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CR =
𝑛𝑛
𝑛𝑛
𝑤𝑤

= 𝑤𝑤. 

In addition, 𝑛𝑛/𝑤𝑤 Boolean values are required. 
The PCA algorithm has variations, such as the cache filter, poor man’s 

compression (mean), and poor man’s compression (mid-range), which is the 
same compression algorithm as the PCA [45]. 

Adaptive Piecewise Constant Approximation 

APCA is an advanced version of PCA. In some sources, this method is called 
PCA. However, in this study, PCA has fixed-length constant segments, as 
presented previously, while in APCA, the window size 𝑤𝑤 varies to achieve the 
best possible CR [46]. Thus, APCA is rather similar to PCA. 

The APCA algorithm starts from the first value in the dataset and continues 
to subsequent values one by one continuously, comparing the values with each 
other as long as 𝑣𝑣max − 𝑣𝑣min ≤ 2𝜀𝜀. When the difference between the largest and 
smallest values exceeds the error bound requirements, the last value is removed 
from the constant linear segment. The constant linear segment value is calculated 
as in PCA as the middle value between the largest and smallest values. For the 
next segment, the APCA algorithm begins the comparison again, starting from 
the value that falls out of the previous linear segment [30]. 

The results of the APCA (with an error bound 𝜀𝜀 = ±0.5 ℃) for the test 
dataset are shown in Figure 2. The test dataset is the same as that used for PCA. 
The original dataset of 30 values is reduced to five constant values with varying 
lengths as a result of the compression. 

FIGURE 2  APCA for the test dataset 

Similar to PCA, APCA also works well if the values remain stable, but when 
the values change periodically in one direction, the compression efficiency is 
limited. As a result of the APCA compression algorithm, the original dataset is 
presented as a sequence of 𝑘𝑘data segments presented as a pair of values 𝑐𝑐𝑖𝑖 
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(constant value) and 𝜏𝜏𝑖𝑖  (timestamp of the last data point in the segment). The 
compressed data are presented as  

APCA(𝑆𝑆) = 〈(𝑐𝑐1, 𝜏𝜏1), (𝑐𝑐2, 𝜏𝜏2), … , (𝑐𝑐𝑘𝑘, 𝜏𝜏𝑘𝑘)〉. 

Each constant-value segment varies in length, and the size of the segment can be 
as short as one data point [30,46]. Owing to the unpredictable length of the 
segments, the inherent latency of the APCA algorithm is unknown and depends 
on the dataset characteristics. If the data do not vary significantly and remain for 
long periods within the error bound requirement, the CR will be high; however, 
as a drawback, the latency will also be high [44]. APCA is unsuitable for real-time 
applications due to its unpredictable latency. 

The APCA algorithm is a simple method and is thus well suited for 
constrained sensor nodes. Nevertheless, its effectiveness in compressing data is 
limited, and there are more effective but slightly more complex algorithms 
available. In APCA, a single segment costs 𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡 space to store, where 𝑏𝑏𝑠𝑠 is the 
size of the constant value (individual data points in the original data are of the 
same size), and 𝑏𝑏𝑡𝑡𝑡𝑡 is the size of the timestamp. The CR in the total size is 

CRsize =
𝑛𝑛�𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡�
𝑘𝑘�𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑡𝑡𝑡𝑡�

, 

where 𝑛𝑛 is the number of data points in the original dataset, and 𝑘𝑘 is the number 
of constant segments after compression [46]. Thus, the overall CR in the data 
points is CR = 𝑛𝑛

𝑘𝑘
. 

Piecewise Linear Histogram 

PWLH is similar to APCA, but the linear segments do not need to have constant 
values. The algorithm finds the best-fit linear segments from the original data 
that meet the error bound requirements. The PWLH algorithm uses linear 
regression to find the best-fit linear segment starting from data point 1 and 
continuing as long as the difference between each individual data point remains 
within the error bound from the regression line. In the compressed dataset, each 
linear line is presented with three parameters: 𝑐𝑐𝑖𝑖𝑏𝑏, which is the beginning value 
of the linear segment; 𝑐𝑐𝑖𝑖𝑒𝑒, which is the end value of the segment; and 𝜏𝜏𝑖𝑖, which is 
the timestamp of the end point of the linear segment. Thus, the compressed 
dataset is presented as  

PWLH(𝑆𝑆) = 〈�𝑐𝑐1𝑏𝑏 , 𝑐𝑐1𝑒𝑒 , 𝜏𝜏1�, �𝑐𝑐2𝑏𝑏 , 𝑐𝑐2𝑒𝑒 , 𝜏𝜏2�, … , �𝑐𝑐𝑘𝑘𝑏𝑏, 𝑐𝑐𝑘𝑘𝑒𝑒 , 𝜏𝜏𝑘𝑘�〉, 

see [30,47]. 
In Figure 3, the PWLH algorithm is used for the same test data as for PCA 

in Figure 1 and for APCA in Figure 2. The solid black lines represent the linear 
segments when the error bound is 0.5 ℃. The raw dataset can be modeled with 
two linear lines. 
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FIGURE 3  PWLH for the test dataset 

The linear regression line must be calculated from three values to as many 
values as there are in each final linear segment. Many calculations are required if 
the linear segment is long. The computational complexity is not as low as that of 
other simple methods. In addition, the inherent latency becomes high and 
unpredictable when the linear segments are long. Unpredictable and long 
inherent latency makes the algorithm inappropriate for use in online streaming 
and in real-time or near-real-time applications. The basic idea of finding the best-
fit linear line to represent a dataset and maximize the CR has been used in many 
linearity-based compression algorithms. Examples of slight variations of the idea 
are bounded-error piecewise linear approximation, SF, swing filter, and swing-
RR [30,45,48,49]. 

Lightweight Temporal Compression 

LTC is a well-known simple compression algorithm. It was first presented in [29], 
but a similar algorithm, Fan, was actually presented previously in [50] for 
electrocardiogram (ECG) data. LTC is a powerful compression algorithm, 
especially for environmental data that behave quite linearly when the 
observation time window is short. The CR depends on the data properties and 
the error bound used. LTC can achieve a CR as high as 20 when compressing 
environmental temperature data [29].  

The functionality of the LTC algorithm is illustrated in Figure 4. The linear 
model starts with the first measured value (𝑣𝑣1 = 20.0, 𝑡𝑡1 = 1) as a starting point 
(the first value in the compressed dataset, 〈𝑐𝑐1, 𝜏𝜏1〉). When the next value (𝑣𝑣2 =
20.3, 𝑡𝑡2 = 2) is received, the limit lines (upper and lower dashed lines) are drawn 
to the new value of ±𝜀𝜀 (20.8 and 19.8 at 𝑡𝑡2, as the error bound 𝜀𝜀 is 0.5 °C) (Figure 
4 (a)). When the next value is received, the limit lines are tightened if the value 
extremes with error bounds (𝑣𝑣𝑖𝑖 ± 𝜀𝜀) are located inside the limit lines (Figure 4 (b) 
and (c)). If the new value with error bound extremes falls outside the limit lines, 
then the linear section ends in the timestamp of the previous value with the value 
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at the midpoint of the limit lines (Figure 4 (d); red solid line end point in 
timestamp 4). The algorithm then starts again, with the compressed value (𝑐𝑐2, 𝜏𝜏2) 
in timestamp 4 as the starting point. The compressed dataset is  

LTC(𝑆𝑆) = 〈(𝑐𝑐1, 𝜏𝜏1), (𝑐𝑐2, 𝜏𝜏2), … , (𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑘𝑘)〉. 

In Figure 4, the first two data pairs in the compressed dataset are (20, 1) and (20.65, 
4). 

FIGURE 4  LTC algorithm 

The efficiency of the LTC algorithm is shown in Figure 5, in which the LTC 
algorithm is used to compress the test dataset (temperature in degrees Celsius). 
With an error bound 𝜀𝜀 = ±1.0 °C the entire test dataset fits into the linear section 
(red solid line). If the error bound is lowered to ±0.5  °C, the test dataset is 
presented with four linear lines (black dashed lines). Therefore, the compressed 
dataset has five value pairs. 

The LTC has unpredictable latency, and it depends on each linear section 
length. The higher the CR, the longer the latency. If the data behave linearly, a 
long latency is derived. When the new linear segment begins, the starting point 
is known, but the direction of the following values remains unknown until the 
linear segment ends, and the end point is stored in the compressed dataset. 
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FIGURE 5  LTC for the test dataset 

Some slight variations in the original LTC algorithm have been developed. 
In [51], a slight modification of the LTC algorithm was used. In this modified 
version, the out-of-bound (first value capped off from the linear segment) value 
becomes the starting point for a new linear segment. This modified version is not 
as compression efficient as the original LTC because the end point of the linear 
segment is not the starting point of the next segment, as it is in the original version. 
Other variations include adaptive lightweight temporal compression [52], 
refined lightweight temporal compression (RLTC) [53], multidimensional 
extension of the LTC method [54], direct lightweight temporal compression 
(DLTC) [55], and DFan [56]. These modified versions were developed to either 
minimize the data reconstruction error or improve compression efficiency. For 
example, DLTC can improve the data reconstruction error, but it is achieved at 
the cost of a lower CR. RLTC can improve the CR but at the cost of a more 
complex algorithm. 
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As the use of IoT is evolving quickly, the energy efficiency of IoT devices has 
become a significant factor. As the number of IoT devices can be very large, the 
cost of one IoT device cannot be high. Thus, the technologies, components, and 
solutions used in most IoT devices need to be simple and cost effective. IoT 
devices typically refer to battery powered wireless devices, including sensors. 
For cost efficiency and low power consumption, the microcontrollers used are 
simple and computationally constrained. Moreover, memory resources are 
limited. Sensor nodes are usually located in places where electricity grids are not 
available. Thus, the devices are usually battery powered, and energy 
consumption needs to be minimized to lengthen the lifetime of the devices. 
Changing the empty batteries of numerous IoT devices located in a wide area 
incurs a significant cost. 

The hardware technology solutions used need to be optimized for low 
energy consumption. For example, specific low-power wireless connections 
developed for the IoT are available. The use of software solutions is as important 
as the use of optimal hardware solutions. With suitable software solutions, it is 
possible to achieve significant energy savings on IoT sensor devices. Developing 
lightweight sensor data compression algorithms can help reduce sensor node 
energy consumption. Compression algorithms help minimize the amount of data 
required to send over a wireless connection to the network. This can reduce either 
the number of transmitting periods or the amount of data transmitted in one 
transmission. These compression algorithms need to be appropriate for 
compressing the data achieved from sensors, and the compression should be 
done in online mode for sensor data stream. Compression algorithms should be 
effective for compression and computationally light to be suitable for 
computationally constrained sensor nodes. CR, inherent latency, and 
reconstruction error are important aspects of compression algorithms. The 
efficiency of compression algorithms in compressing sensor data depends on the 
type of data. For example, different environmental magnitudes behave 
differently from ECG data, and some compression algorithms are more effective 
for certain types of data than others. There is no general lightweight compression 

3 MOTIVATION AND RESEARCH PROBLEM 
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algorithm that suits every type of data, application, and platform. The 
compression algorithm used is a compromise between CR for certain types of 
data, inherent latency, and data accuracy. Moreover, computational complexity 
is a concern. 

In this study, simple, lightweight, and easy-to-implement sensor data 
compression algorithms, mainly for compressing environmental magnitudes, are 
evaluated and developed. Compression algorithms have been evaluated and 
developed to minimize inherent latency and to efficiently compress specifically 
environmental magnitudes that behave linearly in a short time window. 
Algorithms are lightweight and easy to implement in constrained sensor nodes. 
The effect on the sensor node’s energy consumption is evaluated using real 
experiments. 

Compression algorithms have been developed for decades, but most are not 
suitable for compressing data in online mode. Many algorithms are also complex 
and computationally heavy. Simple and light sensor data compression 
algorithms have not been focused on in recent years. 

Using compression algorithms in the sensor node itself can be considered 
edge computing. In edge computing, at least some of the calculations are made 
in close proximity to the data source, such as a sensor. Thus, the compression of 
sensor data can be considered edge computing. Sensors are fundamental 
components of IoT devices, as the whole concept of the IoT is related to the data. 
However, achieving data with sensors and sensor nodes is not always the most 
efficient and cost-effective method. It can be useful to enrich the data obtained 
from sensors with other available data. Other data can be open data available on 
the internet. Weather data are common open data available on the internet to be 
used in environmental solutions. Combining open data with sensor data can be 
more effective than relying on sensor data alone. It can also be used to reduce the 
number of IoT sensor nodes or sensors in one IoT node. Weather data can be 
weather observations or weather forecast data. Combining open data to enrich 
measured sensor data is also evaluated in this study. 

Overall, the main idea of this study is to find simple solutions to reduce and 
minimize the energy consumption of an IoT sensor node using lightweight and 
easy-to-implement solutions. Methods should be suitable for use in constrained 
IoT sensing devices with a wireless network connection. 
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Article I is a general overview of the different aspects of energy-efficient edge 
computing. It describes the main subjects related to the topic and guides the 
overall studies covered in the other articles. It also serves as a general 
introduction to the topics of this dissertation and describes the importance of the 
topics covered in the other articles. All the other articles deal with specific sensor 
data analysis topics. Article II focuses on utilizing sensor data, together with 
other available data, to make decisions. In this case, other data are the different 
local weather observation data and weather forecast data. The other data used to 
enrich the measured sensor data can be open data available from the internet, 
other data that can be restricted, or company confidential data. Articles III–VIII 
deal with linearity-based compression algorithms and their utilization and 
performance to compress sensor data efficiently and with low energy 
consumption. The main idea of Articles III–VIII is to compress environmental 
sensor data efficiently in real-time using simple and computationally light 
compression algorithms. One of the main targets is to reduce energy 
consumption with sensor data compression and to lengthen the lifetime of 
battery powered IoT sensor nodes. The algorithms’ inherent latency is also a 
significant concern. 

Article II presents how sensor data can be combined with other available 
data. The other data are open data available from the internet and more restricted 
data that are not openly available for everyone. Other data have been used to 
enrich the data gathered with sensors. Not all information needs to be measured 
individually, but data already available from other sources can be used. It may 
also lighten the need for accurate and continuous sensor measurement and thus 
can reduce energy consumption overall, even though energy consumption was 
not a concern in the pilot case presented in the article. 

Articles III and V present new versions of linearity-based compression 
algorithms suitable for sensor nodes. Methods are developed specially for 
compressing sensor data streams in online mode. Article V uses the results of 
Article III, and the main consideration is to minimize the algorithms’ inherent 
latency. The algorithms developed in Article III are further developed in Article 

4 OVERVIEW OF INCLUDED ARTICLES 
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V. Article IV also uses the results obtained in Article III. The algorithms 
developed in Article III are evaluated in Article IV using multiple datasets with 
varying error bounds to determine whether there is a correlation between the 
characteristics of the dataset and the CR obtained using a particular linearity-
based compression algorithm. The correlation found in Article IV can be used to 
evaluate the performance of a certain compression algorithm to compress a 
dataset with certain characteristics. In Articles VI and VII, the compression 
algorithms developed in Articles III and V are implemented on a sensor node 
that utilizes a LoRa network to transmit the data to the cloud. The effect of the 
algorithms on the energy consumption of the sensor node is evaluated and tested. 
In Article VIII, the real-time linear regression-based temporal compression (RT-
LRbTC) algorithm presented in Article V is developed further. Thus, two new 
versions of the algorithm are developed, and their performance is evaluated. 

4.1 Article I: Requirements for Energy Efficient Edge Computing: 
A Survey 

O. Väänänen and T. Hämäläinen, ”Requirements for Energy Efficient Edge 
Computing: A Survey,” in The 18th International Conference on Next Generation 
Wired/Wireless Advanced Networks and Systems NEW2AN 2018. St. Petersburg, 
Russia, Aug. 2018, doi: https://doi.org/10.1007/978-3-030-01168-0_1.  

Overview of Article I 

Article I surveys publications on different edge computing methods from the 
perspective of energy consumption. The purpose of Article I is to go through the 
current situation of the different methods for reducing overall energy 
consumption in IoT end devices or in the so-called edge devices. It deals with the 
fundamentals of energy-efficient edge computing and the many different aspects 
of edge devices and edge computing. Different challenges, benefits, and 
advantages are discussed in the article. 

The article discusses the different aspects of the following terms: IoT, edge 
computing, and fog computing. The benefits and challenges between edge/fog 
computing and cloud computing are compared. According to the literature, 
cloud computing can cause challenges in different latency critical IoT 
applications [57]. Applications that are sensitive to latency include smart traffic 
and intelligent transportation systems, autonomous vehicles, and virtual and 
augmented reality applications. Various applications related to safety-critical 
and sensitive data may not rely on cloud connection. Cloud computing cannot 
meet the quality of service requirements for latency and safety-critical systems. 
In smart transportation and vehicle systems, it is possible to use vehicle-to-
vehicle connections or data achieved from vehicles to avoid collisions. As such 
an analysis is time and latency critical, it is impossible to rely on cloud computing. 
These decisions must be made either locally or in close proximity at a Cloudlet 
[58]. An overview of the general IoT architecture is illustrated in Figure 6 [59]. 

https://doi.org/10.1007/978-3-030-01168-0_1
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FIGURE 6  Edge and fog architecture in IoT [59]. 

The edge refers to the close proximity of the sensor and the sensor node. An 
edge device usually refers to the sensor node itself. A sensor node is commonly 
wirelessly connected to the network gateway, and it includes a microcontroller, 
which is constrained and limited by memory. As the number of edge devices can 
be large, edge devices are usually battery powered. This nature of the IoT sensor 
node pushes for the requirements for the energy efficiency of these end nodes. 
Sending data wirelessly is recognized as the most energy-intensive task for 
wireless IoT devices. Changing the batteries of a large number of IoT nodes can 
be costly. Thus, maximizing battery lifetime can be a cost-effective solution.  

The term fog refers to the next level in a network hierarchy, as shown in 
Figure 6. Different network elements, such as gateways and routers, can be 
described as fog devices. Typically, fog devices are computationally more 
powerful than edge devices. As they are normally mains-powered devices, 
energy efficiency is not so much a critical aspect in fog devices. 

One great challenge in the utilization of edge and fog computing is the 
heterogeneous nature of devices. It is difficult to develop generic solutions to be 
used in different edge devices, which can have different operating systems, 
wireless connection protocols and technologies, and hardware platforms. Many 
simple sensor nodes are based on simple embedded microcontrollers, while some 
edge devices may be based on Linux-based single-board computers, such as 
Raspberry Pi. In addition to different platforms, applications also vary; thus, 
there are no generic solutions available for different IoT devices. For more 
powerful single-board computers, it is possible to use virtualization or a 
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container-based approach. This kind of approach makes it possible to run the 
same applications with different platforms and operating systems. 

Various methods of reducing the energy consumption of wireless sensor 
networks are effective, as sending data wirelessly is the most energy-consuming 
activity of a wireless node. Article I lists many energy-efficient routing 
algorithms used in traditional wireless sensor networks. These routing 
algorithms are not suitable for IoT sensor networks. In IoT sensor networks, the 
end nodes can be distributed in a large area; thus, the nodes are not wirelessly 
connected to each other, such as in a traditional sensor network. That kind of IoT 
sensor network utilizes a star-type protocol in which the nodes are directly 
connected to the base station (gateway), which can be located at a long distance. 
To solve this challenge, several IoT network technologies have been developed, 
such as LoRa, SigFox, and NB-IoT. All of these have long ranges, use a star 
topology, and have low energy consumption. As a drawback to low energy 
consumption, the data rate is limited in these wireless technologies but sufficient 
for transmitting sensor data. 

As wireless transmission and receiving are the most energy-intensive 
activities in a wireless sensor node, reducing the transmitted data is an effective 
method to reduce energy consumption in the IoT node and thus lengthen the 
lifetime of the battery powered device. Article I lists and surveys several data 
compression methods suitable for constrained IoT sensor nodes. Data 
compression needs to be conducted on the edge. As IoT sensor nodes have a 
simple microcontroller with limited computational power and limited memory, 
these impose requirements for the compression algorithm used. The compression 
algorithm should be able to compress the sensor data stream in online mode. The 
compression methods listed in Article I are lossy methods. The methods can be 
categorized into two groups: time domain and transform domain. The 
effectiveness of the compression method to compress data depends on the 
characteristics of the data. Therefore, there is no universal compression algorithm 
suitable and effective for every data type. LTC is a popular light and effective 
time domain compression algorithm for sensor data. It is especially suitable for 
environmental data compression, such as temperature and humidity. 

Article I also briefly discusses the different IoT protocols. The typical 
communication data protocols are MQTT, CoAP, XMPP, and AMQP. MQTT and 
CoAP are the most appropriate for constrained IoT devices. 

As IoT devices are connected to the internet, security is an important issue. 
The data transmitted via the internet can be sensible and need to be kept in secret. 
One solution is to encrypt transmitted data. The encryption method should be 
light because IoT devices are computationally constrained. Lightweight 
encryption algorithms have been developed and are available. A potential 
lightweight asymmetric encryption algorithm called Aaβ is presented in [60], and 
it is compared with the traditional RSA encryption algorithm in [61]. 
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Author’s Contribution to Article I 

Olli Väänänen proposed the general topic, and Article I served as a survey to find 
more detailed topics for further research. Olli Väänänen wrote and revised the 
manuscript. Timo Hämäläinen supervised the study and revised the manuscript. 

4.2 Article II: Predictive pumping based on sensor data and 
weather forecast 

O. Väänänen, J. Hautamäki and T. Hämäläinen, “Predictive pumping based on 
sensor data and weather forecast,” 2019 IEEE Sensors Applications Symposium 
(SAS), Sophia Antipolis, France, 2019, pp. 1–5, doi: 
https://doi.org/10.1109/SAS.2019.8706018. 

Overview of Article II 

An IoT-based system for controlling pumping from a water reservoir while 
drying peat bog has been developed. The IoT system that controls pumping 
makes decisions based on several sensors and other data. The data used in 
decision making are local water-level data, local rainfall measurements, and 
weather forecasts obtained from the Finnish Meteorological Institute (FMI) open 
data. The water pump is driven by a frequency converter, which can control the 
pump’s rotational speed in stepless mode. The IoT system is used to control the 
frequency converter in such a way that pumping can be started before the water 
level in a reservoir reaches the trigger level. In Article II, the sensor data (water 
level) have been enriched with other data. Other data that have been used are 
open data (weather forecasts) and local weather observation data from separate 
weather services (not open data). 

Drying peat bog is important in peat production. Water is directed from the 
peat bog through ditches to the local water reservoir. The water is then pumped 
from the reservoir to the filtering field. The filtering field is a large area with small 
trees, plants, and other vegetation. Water is filtered through this field before it 
enters nature and water bodies. Water needs to be filtered because otherwise, it 
will be contaminated with solids and other substances, which can weaken the 
water quality in water bodies. The filtering field filters more effectively if the 
water flow is even. Traditionally, the pumping period starts when the water level 
reaches a certain level in the water reservoir and stops when the water level 
reaches the lower limit level. Pumping occurs at nominal speed, thus causing the 
water rush in, bursting toward the filtering field. This burst can be seen as an 
uneven water flow after the field. Between pumping periods, the water flowing 
to the bodies of water can be minor. 

The overall pump control system is presented in Figure 7. A water level 
transmitter has a traditional 4–20 mA current signal, which is used in automation 
technology due to its robustness against electromagnetic interference. This mA 
signal is converted to a digital I2C-bus signal, which can be connected to the 
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Raspberry Pi platform. The Raspberry Pi sends the water level information 
continuously through 3G/4G connection to the ThingsBoard.io IoT platform, 
which operates in the cloud server. ThingsBoard.io is an open-source IoT 
platform that can be used to visualize different IoT data and simple data analysis. 
The local weather station sends the data to the Weatherlink cloud server. The 
ThingsBoard.io platform obtains local weather data from Weatherlink. The 
weather forecast is obtained from the FMI open data service. The FMI updates 
the weather forecast every 6 h. This study is interested only in rainfall forecasts. 

 

FIGURE 7  The IoT-based pumping control system. 

The algorithm developed for controlling the frequency converter and pump 
is simple. The algorithm inputs are the rainfall forecast, the last hour of 
accumulated rainfall, and the actual water level. The overall system creates a 
manipulated current signal (4–20 mA) to control the frequency converter. If the 
water level is low or if no rainfall has been detected during the last hour and no 
rainfall is predicted, then the created current signal is the same received from the 
water level transmitter. If the water level is over a certain trigger level, and if the 
local weather station has detected enough rain during the last hour and/or the 
weather forecast predicts rainfall during the next hour, the current signal value 
increases, and the pumping may start in anticipation if the current signal created 
is sufficiently high. 
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One challenge is the uncertainty of weather forecasts. The retrospect 
between the real rainfall data from the local weather station and the weather 
forecast data demonstrates a low correlation. Thus, the algorithm may predict 
pumping due to predicted rainfall and start pumping even if rain has never 
started. 

Results of Article II 

In the pilot case, the algorithm’s parameters were the best estimates because no 
previous measurement data were available. The algorithm parameters were 
tuned during the pilot in autumn 2018. The system proved to be a potential one 
to even out the pumping, but the weather conditions during the piloting period 
were not normal. Rainfall was minimal during that autumn, and tuning the 
algorithm further was not possible. The basic operation of the IoT control system 
functioned well, and with fine tuning of the algorithm’s parameters, the system 
could be used to even out pumping when the rain had just started or when rain 
was coming. The system utilizes local sensor data and open data from the internet 
and combines the data with the algorithm to make decisions. 

Author’s Contribution to Article II 

Olli Väänänen developed the system-level functionality of the IoT pumping 
system, developed the control algorithm, participated in constructing the IoT 
system, participated in analyzing the results, and wrote and revised the 
manuscript. Jari Hautamäki participated in developing the IoT pumping system, 
writing, and revising the manuscript, and supervising the pilot case. Timo 
Hämäläinen supervised the entire study and revised the manuscript. 

4.3 Article III: Compression Methods for Microclimate Data 
Based on Linear Approximation of Sensor Data 

O. Väänänen and T. Hämäläinen, ”Compression Methods for Microclimate Data 
Based on Linear Approximation of Sensor Data,” The 19th International Conference 
on Next Generation Wired/Wireless Advanced Networks and Systems NEW2AN 2019. 
St. Petersburg, Russia, Aug. 2019, doi: https://doi.org/10.1007/978-3-030-30859-
9_3. 

Overview of Article III 

This article evaluates the ability of different simple sensor data compression 
algorithms to compress environmental sensor data and to further develop certain 
compression algorithms. Using computationally light compression algorithms to 
compress the sensor data stream in an edge device, it is possible to reduce the 
number of radio transmitting periods. The radio transmitter is the most energy-
intensive component of a wireless sensor node while transmitting. With the right 
compression algorithm with an acceptable reconstruction error, the energy 

https://doi.org/10.1007/978-3-030-30859-9_3
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consumption of the end device can be reduced, and data accuracy can be 
maintained at an acceptable level at the same time. 

Linear regression-based compression algorithms have been developed and 
presented in the literature [37,45,62,63]. Most of the compression algorithms 
presented in the literature are suitable for compressing a certain dataset that is 
already available. In this study, the main idea is to compress sensor data value 
by value when new data values are available. One well-known and suitable 
algorithm for compressing the sensor data stream is LTC. LTC was first 
introduced in [29], but a similar compression algorithm was already presented 
several years earlier called Fan for ECG data [50]. In Article III, the authors 
present a new version of the linear regression-based algorithm called linear 
regression-based temporal compression (LRbTC) and its modification, called 
modified linear regression-based temporal compression (M-LRbTC). These 
regression-based algorithms were developed to compress sensor data stream 
value by value in online mode. These algorithms are also simple and 
computationally light. 

The ability of LTC and M-LRbTC algorithms to compress real 
environmental sensor data is evaluated and compared with the DCT method. 
The microclimate datasets used are from the FMI open data service. The datasets 
are from the whole-year 2018 values for temperature, humidity, and wind speed 
from the Salla Naruska measurement station. The measurement interval in the 
datasets is 10 minutes. Datasets with 1-h measurement intervals are tested for 
comparison. The algorithms’ ability to compress datasets is evaluated using 
MATLAB simulation. Even though full datasets are available, data compression 
is performed value by value as the data are measured in online mode. The ability 
of compression algorithms to compress data is evaluated using CR, with different 
reconstruction errors (error bound) allowed. 

Results of Article III 

LTC proved to be the most effective compression algorithm among the tested 
ones for environmental data. The developed M-LRbTC algorithm was more 
effective than DCT when the DCT had a window size of 5 values. The M-LRbTC 
benefits from increasing the N value from 3 to 4 or 5 but falls behind the LTC 
significantly. For the tested temperature data with a 10-min measurement 
interval and error bound ε = 0.5 °C, the CR values were 3.9–4.8 for M-LRbTC and 
9.5 for LTC. For the air pressure data with a 10-min interval and error bound ε = 
0.5 hPa, the CR values were 8.94–10.75 for M-LRbTC and 28.22 for LTC. For the 
wind speed data with 10-min average values and error bound ε = 0.5 m/s, the 
CR values were 2.62–3.18 for M-LRbTC and 5.09 for LTC. Thus, the CR values 
were significantly higher for air pressure data than for the other data types 
because air pressure data behave more linearly with the chosen error bound. 

In Article III, the idea of modifying the M-LRbTC further to be more suitable 
for real-time sensor stream compression is presented. The latency of the 
algorithm could be improved by sending the regression line coefficients with a 
timestamp, not the actual values. The receiver knows that the future values 
continue to follow the regression line with the allowed reconstruction error as 
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long as the new regression line parameters are not received. This kind of 
modified version is developed, evaluated, and presented in Article V. 

Author’s Contribution to Article III 

Olli Väänänen proposed the topic, developed the new algorithms, programmed 
the algorithms using MATLAB, evaluated the algorithms, and wrote and revised 
the manuscript. Timo Hämäläinen supervised the study and revised the 
manuscript. 

4.4 Article IV: Linear Approximation Based Compression 
Algorithms Efficiency to Compress Environmental Data Sets 

O. Väänänen, M. Zolotukhin, and T. Hämäläinen, ”Linear Approximation Based 
Compression Algorithms Efficiency to Compress Environmental Data Sets,” In: 
Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) Web, Artificial 
Intelligence and Network Applications. WAINA 2020. Advances in Intelligent 
Systems and Computing, vol. 1150. Springer, Cham. doi: 
https://doi.org/10.1007/978-3-030-44038-1_11.  

Overview of Article IV 

In Article IV, the effect of dataset characteristics on linearity-based algorithms’ 
ability to compress effectively is evaluated. The ability of different compression 
algorithms to compress data depends on the data characteristics. For example, 
environmental microclimate data differ greatly from ECG data, which have 
periodical behavior. Data from an acceleration sensor in moving vehicles (cars, 
motorcycles, etc.) or in wearable well-being devices can be unpredictable and 
have sudden changes. There is no compression algorithm that suits every type of 
data. 

In this article, the effect of dataset characteristics on the ability of various 
linearity-based compression algorithms to compress data is evaluated. The idea 
is to examine whether the dataset characteristics can be used to estimate the CR 
achieved with a certain compression algorithm. Even though the sensor values 
are not known in advance, the environmental values of a certain geological 
location behave similarly year by year. Thus, it is possible to expect that future 
values have behaviors similar to history values. 

The evaluated linearity-based algorithms are LTC and LRbTC (i.e., M-
LRbTC, which is presented in Article III) with N = 3, 4, and 5. DCT is also 
evaluated as a comparison. The CR of the compression algorithms is evaluated 
for different dataset characteristics. The datasets used are temperature, air 
pressure, and wind speed data. The datasets used are taken from the FMI open 
data service. All environmental magnitudes measured are from the 2018 Salla 
Naruska measurement station data. The whole-year 2018 datasets with a 10-min 
measurement interval are used, and they are divided into monthly datasets with 
10-min, 20-min, 30-min, 40-min, 50-min, and 1-h measurement intervals. A 
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whole-year dataset is also used with the same measurement intervals. In total, 78 
different datasets are used for each environmental magnitude. 

The dataset characteristics evaluated are the average absolute change 
between consecutive measurements (AC) and the standard deviation of the 
change between consecutive measurements (SD). The error bounds used are 
0.5 °C for the temperature datasets, 0.5 hPa for the air pressure datasets, and 0.5 
m/s for the wind speed datasets. The wind speed datasets are 10-min average 
values. 

The compression algorithms are programmed using MATLAB, and both 
AC and SD values are evaluated for each dataset. The correlation between the CR 
and the AC and SD values is examined from the graphs, and the trend lines are 
determined using MATLAB. The trend line chosen is visually the best-fit 
polynomial regression line. The ability of the polynomial regression line to 
estimate the CR for the dataset with a certain AC or SD is estimated using the 
norm of the residual value, which is the measure of the goodness of the line fit 
for the data values. 

Results of Article IV 

Correlation was clearly seen in the graphs between the AC and SD values with 
CR for all types of environmental data tested. Generally, the AC value estimated 
the CR better than the SD value for all types of data tested. This was visually 
observed in the graphs and in the norm of the residual values. For the 
temperature data, the best-fit trend lines were eighth-degree polynomials; for the 
air pressure data, the best-fit trend lines were fourth-degree polynomials; and for 
wind speed data, the best-fit trend lines were also fourth-degree polynomials. 
The best-fit trend lines were chosen by visually estimating the fit together with 
the norm of the residual values. 

Article IV shows that it is possible to predict the CR of the selected 
compression algorithm for data with certain AC and SD values. The correlation 
was better between AC and CR than between SD and CR. The AC value is also 
easier to calculate than the SD value. The results of Article IV can be used to select 
a suitable compression algorithm and to estimate the lifetime of a battery 
powered sensor node using a certain compression algorithm. The strongest 
correlation between the quality factors and CR was observed in the wind speed 
data and the worst in the air pressure data. The CR was the highest for air 
pressure data and the lowest for wind speed data with each compression 
algorithm. These results are for certain error bounds selected. 

Author’s Contribution to Article IV 

Olli Väänänen proposed the topic, conducted the evaluations using MATLAB, 
evaluated the results, and wrote and revised the manuscript. Mikhail Zolotukhin 
revised and recommended improvements to the manuscript and its structure. 
Timo Hämäläinen supervised the study and revised the manuscript. 
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4.5 Article V: Sensor Data Stream On-line Compression with 
Linearity-based Methods 

O. Väänänen and T. Hämäläinen, "Sensor Data Stream on-line Compression with 
Linearity-based Methods," 2020 IEEE International Conference on Smart Computing 
(SMARTCOMP). Bologna, Italy, 2020, pp. 220–225, doi: 
https://doi.org/10.1109/SMARTCOMP50058.2020.00049. 

Overview of Article V 

The linearity-based compression algorithms presented in the literature are best 
suited for datasets that are already available or for sensor data systems that are 
not latency-critical. In Article V, the compression algorithms are compared by 
inherent latency and CR. A new version of LRbTC, called RT-LRbTC, is presented. 
It is a variation of the M-LRbTC algorithm that significantly improves latency. 
Therefore, it is more suitable for applications that have latency requirements. 

Some temporal compression algorithms, such as PCA, APCA, and PWLH, 
have been presented and explained. These algorithms are simple but do not have 
predictable latency. The linear regression-based algorithms (i.e., LRbTC and M-
LRbTC) presented in previous articles are also explained, and their inherent 
latency is described. LTC is used for comparison, but it has the drawback of 
having a non-predictable latency, which is long if the CR is high. 

The short latency and predictability of RT-LRbTC are based on calculating 
the new regression line from the sensor values already available. The RT-LRbTC 
algorithm uses the three last available values (N = 3) to calculate the regression 
line. M-LRbTC needs to wait for new measurement values when a new 
regression line is required, adding to the inherent latency. The output of the RT-
LRbTC algorithm is the parameters of the regression line (slope and base) and 
the timestamp of the starting point of the line. When the line ends (value fall off 
the regression line by more than one error bound), the new line parameters are 
immediately calculated and stored or transmitted to the sink. Thus, only one 
transmission cycle per regression line is required, compared with the two 
transmitting periods needed in the M-LRbTC algorithm. 

In Article V, the performance of the selected algorithms is evaluated by 
compressing real environmental datasets. The magnitudes of the datasets are 
temperature, air pressure, and wind speed. The CRs of the algorithms are 
evaluated using MATLAB with different error bounds. The error bounds are 0.1–
2.0 °C for the temperature dataset, 0.1–2.0 hPa for the air pressure dataset, and 
0.1–2.0 m/s for the wind speed dataset. 

Results of Article V 

The compression efficiency of RT-LRbTC was lower than that of M-LRbTC 
because the compressed data had more regression lines. However, RT-LRbTC 
benefited from the fact that only one transmitting period was required for each 
regression line, so its overall efficiency was better than that of the M-LRbTC 

https://doi.org/10.1109/SMARTCOMP50058.2020.00049


 
 

37 
 

algorithm. LTC was used for comparison, but it is not suitable for compressing 
the online sensor data stream because it has non-predictable latency. The latency 
is also long if the algorithm compresses the data stream efficiently. LTC had 
superior CR for every dataset tested. RT-LRbTC proved to be an efficient 
compression algorithm with a short and fixed latency, thus making it suitable for 
solutions that have requirements for latency. 

RT-LRbTC was originally developed to achieve short inherent latency. RT-
LRbTC has the shortest latency of the presented algorithms. Its latency in the 
linear section and when calculating the new regression line is one measurement 
interval long (∆𝑡𝑡). The RT-LRbTC algorithm is simple and computationally light, 
suitable for compressing environmental sensor data streams in online mode. 

Author’s Contribution to Article V 

Olli Väänänen proposed the topic, developed a new version of the algorithm, 
conducted the evaluations using MATLAB, examined the results, and wrote and 
revised the manuscript. Timo Hämäläinen supervised the study and revised the 
manuscript. 

4.6 Article VI: LoRa-Based Sensor Node Energy Consumption 
with Data Compression 

O. Väänänen and T. Hämäläinen, "LoRa-Based Sensor Node Energy 
Consumption with Data Compression," 2021 IEEE International Workshop on 
Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 2021, pp. 6–11, 
doi: https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434. 

Overview of Article VI 

In Article VI, linear regression-based compression methods are implemented on 
an embedded sensor board, which has LoRa connectivity to the network. The 
embedded board is an Arduino MKR WAN 1310, which has an Arm Cortex-M0+-
based microcontroller and a Murata LoRa module. A DHT22 temperature and 
humidity sensor is connected to the board. The LoRa network used is a 
commercial LoRa network in Finland operated by Digita. The compression 
algorithms implemented on the embedded board are LTC and RT-LRbTC. RT-
LRbTC is tested with two versions, one with N = 3 and the other with N = 4. The 
embedded board is programmed to measure the temperature value with a 
DHT22 sensor periodically and to apply the chosen compression algorithm to the 
sensor data stream value by value when new values are measured. If the data 
need to be transmitted after the measurement and compression period, the LoRa 
connection is used to transmit the compressed data value to the network. 
Between the measurement and compression periods, the device is programmed 
to go in deep sleep mode. 

The energy consumption of the embedded module is measured in different 
operational phases using a digital multimeter (DMM) and a digital oscilloscope. 

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488434


 
 

38 
 

The DMM is used to measure current consumption in deep sleep mode. The 
supply voltage of the battery is simultaneously measured with an oscilloscope. 
These measured values are used to calculate the power consumption in deep 
sleep mode. Current consumption during active periods cannot be measured 
with a DMM because the current value changes during the active period, 
depending on the operation phase of the board. The current consumption and 
power consumption are measured with and without a compression algorithm to 
determine whether the algorithm calculations have any effect on power 
consumption. The different operational and measurement scenarios are the deep 
sleep phase, the sensor measurement and algorithm calculations phase, and the 
LoRa transmission phase. Energy consumption of the sensor measurement and 
algorithm calculation phase is measured using the current probe of the 
oscilloscope. The current probe is set to measure the current in the battery wire, 
and the other oscilloscope channel is used to measure the supply voltage in the 
board’s battery connector with a voltage probe. Energy consumption is measured 
using the oscilloscope’s math functions to calculate the overall energy consumed 
in the oscilloscope screen time. The energy consumption of deep sleep is also 
measured with the same setup and subtracted from the total energy consumption, 
resulting the measurement and algorithm phase’s energy consumption only. The 
energy consumption of the LoRa transmission is measured similarly, except that 
the previously measured measurement and energy consumption of the 
algorithm are also subtracted from the result, giving only the energy 
consumption of the LoRa transmission. The energy consumption of LoRa 
transmission consists of the energy consumption of the transmitting uplink and 
the receiving downlink. As the LoRa transmitting setup is not adjusted, the 
uplink uses only the Spreading Factor 10, and the downlink varies between the 
Spreading Factor 9 and 12. Energy consumption is measured in both cases. 

Total energy consumption comprises the energy used in deep sleep mode, 
the energy used for measurement and algorithm processing, and the energy 
consumed during LoRa transmission. The measurement and algorithm phase 
appears at regular intervals. The LoRa transmission phase appears when there is 
a need to send the results of the compression to the sink. Thus, the algorithm’s 
CR affects when and how often the transmission phase appears. The total energy 
consumption is approximated using the following equation: 

𝑊𝑊tot = 𝑃𝑃ds𝑡𝑡𝑥𝑥 +
𝑡𝑡𝑥𝑥
∆𝑡𝑡
𝑊𝑊𝑀𝑀 +

𝑡𝑡𝑥𝑥
CR∆𝑡𝑡

𝑊𝑊𝑠𝑠, 

where 𝑃𝑃ds is the deep sleep power consumption, 𝑡𝑡𝑥𝑥 is the overall time, ∆𝑡𝑡 is the 
measurement interval, 𝑊𝑊𝑀𝑀  is the measurement and algorithm phase energy 
consumption, 𝑊𝑊𝑠𝑠 is the LoRa transmission event energy consumption, and CR is 
the CR of the algorithm implemented for the measured data (approximation). 

If the overall energy available is known, such as battery capacity, then it is 
possible to estimate the device lifetime by solving the overall time 𝑡𝑡𝑥𝑥 from the 
previous equation. 
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Results of Article VI 

Every measurement was repeated at least 10 times to improve the reliability of 
the measurement results; thus, the average values were used. Deep sleep current 
consumption was 117 µA, which is not a low value for a modern microcontroller 
sensor board. As the supply voltage was 3.99 V, the power consumption in deep 
sleep was 0.46683 mW. The energy consumption of the measurement and 
algorithm phase varied approximately at 4.6–4.8 mWs, depending on the 
compression algorithm implemented with or without an algorithm. Energy 
consumption was the lowest without an algorithm implemented, but the 
measurement inaccuracy for the low-level currents using an oscilloscope current 
probe was so low that the results were close to each other. Thus, it was impossible 
to draw a difference between the results. The difference in the results between 
the different algorithms and those without the algorithm was negligible. The 
LoRa transmission energy consumption varied slightly between the compression 
algorithm implemented with and without the algorithm. Using an uplink SF10 
and downlink SF9, the total energy consumption was the lowest for LTC (61.68 
mWs) and the highest for RT-LRbTC, N = 4 (73.14 mWs), but the difference 
between the algorithms was, again, negligible. Using the uplink SF10 and the 
downlink SF12, the lowest value was found in LTC (108.80 mWs) and the highest 
in RT-LRbTC, N = 3 (113.40 mWs). The results varied from measurement to 
measurement more than the differences between the algorithms and those with 
no algorithm implemented. Therefore, the calculations of the algorithm did not 
show any significant effect on energy consumption. 

For example, Article VI presents a scenario with a 2,000 mAh battery 
lifetime with a measurement interval of 10 min. The results showed that RT-
LRbTC could extend the device’s lifetime by 25.2%. With a rather long 
measurement interval, the device’s deep sleep energy consumption becomes 
determining for the device lifetime. 

Author’s Contribution to Article VI 

Olli Väänänen proposed the topic, implemented the algorithms for the 
embedded sensor board, conducted the measurements, analyzed the results, and 
wrote and revised the manuscript. Timo Hämäläinen supervised the study and 
revised the manuscript. 

4.7 Article VII: Efficiency of temporal sensor data compression 
methods to reduce LoRa-based sensor node energy 
consumption 

O. Väänänen and T. Hämäläinen, ”Efficiency of temporal sensor data 
compression methods to reduce LoRa-based sensor node energy 
consumption," Sensor Review, Vol. 42 No. 5, pp. 503–516, 2022, doi: 
https://doi.org/10.1108/SR-10-2021-0360. 

https://www.emerald.com/insight/publication/issn/0260-2288
https://doi.org/10.1108/SR-10-2021-0360
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Overview of Article VII 

Article VII is based on Article VI and is a comprehensive study of the topic. The 
measurement setup is improved to be more accurate, and different LoRa setup 
variations are evaluated and measured. This study evaluates the possible 
reduction in the overall energy consumption of the LoRa sensor node using 
linearity-based compression algorithms. By compressing sensor data in online 
mode, LoRa transmission periods can be reduced, thus decreasing overall energy 
consumption.  

The same compression algorithms as in Article VI are implemented on an 
Arduino MKR WAN 1310 evaluation board. The implemented compression 
algorithms are LTC and RT-LRbTC, with N = 3 and 4, respectively. A situation 
without a compression algorithm implemented is used for comparison. The 
Arduino MKR WAN 1310 has LoRa-connectivity and uses a lithium–polymer 
battery as power supply. The DHT22 sensor is used to measure the ambient 
temperature. The test setup is illustrated in Figure 8. 

FIGURE 8  Arduino MKR WAN 1310 setup. 

The active mode current consumption is measured using a shunt resistor 
method in which a resistor of a known value is in a series in supply. By measuring 
the voltage across the resistor, it is possible to calculate the current from Ohm’s 
law equation, I = U/R. The voltage across the shunt resistor can be measured with 
an oscilloscope using a differential voltage probe or two normal voltage probes. 
In this study, the resistor’s voltage is measured with two active voltage probes. 
The shunt resistor is 10 Ω. The shunt resistor measurement is more accurate than 
the current probe measurement used in Article VI. The shunt resistor 
measurement circuit is presented in Figure 9. The current can be obtained from 
the measured values as follows: 

𝐼𝐼 =
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅
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The power consumption can be calculated from the current value if the supply 
voltage is known. Supply voltage is measured with an oscilloscope passive probe. 
The power consumption of the device is as follows: 

𝑃𝑃 = 𝑉𝑉supply𝐼𝐼 

𝑉𝑉supply is the same as 𝑉𝑉2 but measured separately in this study. 

FIGURE 9  Shunt resistor circuit. 

Deep sleep current consumption is measured with a DMM because it is 
more accurate for µA level measurements than the shunt resistor method. The 
sensor measurement process and the algorithm’s energy consumption with and 
without the implemented algorithms are measured using the shunt resistor 
method. The energy consumption of the LoRa transmission is measured with 
every Spreading Factor (SF7–SF12) setting using the shunt resistor setup.  

Results of Article VII 

The deep sleep power consumption 𝑃𝑃𝑑𝑑𝑠𝑠 was 0.46683 mW, similar to Article VI. 
The sensor measurement and the algorithm’s energy consumption varied 
between 4.88 mWs and 4.98 mWs (average values). The difference between the 
algorithms and no algorithm implemented was negligible. Thus, the compression 
algorithm calculations were not adding the energy consumption. The LoRa 
transmission energy consumption depended on the SF used. The energy 
consumption in the transmission was the highest when both the uplink and 
downlink used SF12, and the downlink was received. Energy consumption was 
the lowest with the uplink SF7, and the downlink was not received. 

The average power consumption of the LoRa sensor node was estimated 
from the measured results and with certain CRs for each compression algorithm. 
The CRs of the compression algorithms were taken from Article V. CR = 10 was 
used for LTC and CR = 6 for the RT-LRbTC algorithms. The downlink was not 
received every time, even though it was sent from the network side. Receiving 
the downlink message consumes more energy, but it is the normal scenario and 
should be used when estimating the device’s power consumption and overall 
lifetime. The average power consumption is the highest when both the uplink 
and the received downlink use SF12. The power consumption reduction with the 
compression algorithm is the highest with the uplink SF12 and downlink SF12. 
With the uplink SF7 and the received downlink SF9, the difference in power 
consumption between the algorithms and no implemented algorithms is small. 
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The lifetime of the LoRa sensor node was evaluated with a 2,000 mAh 
battery. In the worst-case scenario, the device always transmits with an SF12 
setting, and the SF12 downlink message is received. The device lifetime without 
a compression algorithm implemented was 343 days if the measurement interval 
was 10 min. If the compression algorithm were implemented, then the lifetime 
would be 562 days with RT-LRbTC and 596 days with the LTC algorithm. If the 
device was transmitted with a lower SF, the lifetime would increase, and the 
effect of the algorithms would not be as significant. 

The study shows that simple compression algorithm calculations do not 
add to the device’s energy consumption but can significantly decrease overall 
energy consumption by reducing wireless transmission periods. With a long 
measurement interval, deep sleep consumption has become the determining 
factor for device lifetime. 

Author’s Contribution to Article VII 

Olli Väänänen proposed the topic, implemented the algorithms on an embedded 
sensor board, performed the measurements, analyzed the results, and wrote and 
revised the manuscript. Timo Hämäläinen supervised the study and revised the 
manuscript. 

4.8 Article VIII: Linearity-based Sensor Data Online 
Compression Methods for Environmental Applications 

O. Väänänen and T. Hämäläinen, ”Linearity-based Sensor Data Online 
Compression Methods for Environmental Applications,” 6th Conference on Cloud 
and Internet of Things (CIoT), Lisbon, Portugal, 2023, pp. 149-156, doi: 
https://doi.org/10.1109/CIoT57267.2023.10084892. 

Overview of Article VIII 

In this study, some well-known computationally lightweight temporal 
compression algorithms are evaluated in terms of the CR and reconstruction 
error quality metrics. The evaluated and tested algorithms are LTC, M-LRbTC 
with different N values, RT-LRbTC, and two new versions derived from RT-
LRbTC. The new versions, RT-LRbTC-2Δt and RT-WLRbTC-2Δt, are presented 
in this article. Special attention is given to the inherent latency of the algorithms 
and the suitability of algorithms to compress sensor data in online mode. The 
algorithm efficiency is evaluated using the CR. The reconstruction error is 
evaluated using the RMSE values. The performance of the algorithms is tested 
using real environmental data from two different weather stations: one located 
in Lapland, Finland, and the other in the southernmost part of Finland. The 
environmental datasets are the temperature, air pressure and wind speed 
datasets for the whole year of 2019. All datasets are measured at 10-min 
measurement intervals. The results show that the method with the best 
compression efficiency also has the highest reconstruction error, with a certain 
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error bound. Moreover, the algorithm with the best CR (LTC) has the most 
unpredictable and the longest inherent latency; thus, it is not suitable for online 
sensor data stream compression. The two new algorithms developed and 
presented improve the compression efficiency compared with the original RT-
LRbTC but at the cost of a longer but still predictable inherent latency. They 
provide a usable compromise between their CR and inherent latency compared 
with the original RT-LRbTC algorithm. 

RT-LRbTC-2Δt is similar to RT-LRbTC, except that the new regression line 
is calculated with one value from a previous linear line (the last value that fits in 
the previous line) and two new values. Thus, waiting for one measurement 
interval is required to obtain the second new value, adding inherent latency to 
2Δt in total. The main idea is to wait for one new value, as it is expected to predict 
future values better than already available previous values and to maintain the 
inherent latency in a reasonably short time. 

The RT-WLRbTC-2Δt algorithm is similar to RT-LRbTC-2Δt, but it utilizes 
a weighted linear regression instead of a normal linear regression. Certain values 
are weighted in a weighted linear regression. In this algorithm, the last value is 
used twice, giving it a double weight. Again, the main idea is the expectation that 
the latest value predicts future values better than the already available previous 
values. 

Results of Article VIII 

LTC had the best compression efficiency, but because of its unpredictable latency, 
it was not suitable for compressing sensor data streams if there were 
requirements for inherent latency. It also had the highest RMSE values for a 
certain error bound. 

Two new algorithm versions, RT-LRbTC-2Δt and RT-WLRbTC-2Δt, 
presented better performance than RT-LRbTC, but the improvement was not 
significant, at least for the datasets used. Using the weighted linear regression 
did not lead to any better performance compared with the normal linear 
regression. The newly developed algorithms benefited from the fact that they 
required only one transmitting period for each linear regression line. Overall, the 
results for the linear regression-based algorithms were similar. 

The performance of the M-LRbTC algorithm was improved by increasing 
the N from 3 to 4 or 5. This led to more complex calculations and added inherent 
latency when calculating the new regression line. 

The RMSE values were similar for each linear regression-based algorithm. 
Overall, all the compression algorithms showed the best performance for air 
pressure data. The air pressure dataset characteristics predicted this because the 
average change (AC) and standard deviation (SD) values were smaller than those 
for the temperature and wind speed data. 

The original RT-LRbTC had the shortest latency. The new algorithms had 
higher inherent latency but slightly better performance for the datasets used. 
Thus, the two new algorithms can be used as a compromise between short 
latency and compression performance. 
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This study proves that it is possible to significantly reduce IoT sensor node 
energy consumption using simple edge software solutions. The compression 
algorithms developed are based on an old idea about the linear behavior of 
environmental magnitudes. The algorithms developed attempt to minimize the 
inherent latency to be suitable for online compression and near-real-time 
applications. 

In Article V, a new version of the LRbTC algorithm called RT-LRbTC is 
presented. The RT-LRbTC algorithm has an inherent latency of one measurement 
interval (Δt) long and demonstrates similar compression efficiency as the other 
linear regression-based compression algorithms. LTC has a superior CR, but due 
to its unpredictable latency, it is not suitable for near-real-time applications that 
require more constant and known latency. 

Linear regression-based compression algorithms are also called lossy 
algorithms, and their compression efficiency is related to the requirement of 
accepted reconstruction error. A typical reconstruction error (error bound) 
accepted for temperature data can be 0.5 °C, for example. With an error bound ε 
= ±0.5 °C, RT-LRbTC obtains a CR of up to 7.3 for the Hanko Tulliniemi 
temperature dataset, as shown in Article VIII. Data were measured at 10-min 
measurement intervals. Thus, the number of transmission periods can be 
reduced to 1/7 from a raw data situation. 

Different variations of linear regression-based compression algorithms are 
easy to develop, but their performance does not change much. In compressing 
sensor data in online mode, it is not possible to anticipate the future values and 
thus the compression algorithm’s performance with certainty. However, as 
environmental magnitudes behave typically for certain geological places, the 
previous datasets can be used to predict different algorithm behaviors for future 
values. These behaviors are utilized and evaluated in Article IV. 

RT-LRbTC has the shortest inherent latency of the evaluated and developed 
compression algorithms. Its effectivity to lengthen the typical IoT sensor node 
lifetime is evaluated in Articles VI and VII. In Article VI, the node lifetime is 
lengthened from 491 days (no compression) to 616 days with RT-LRbTC, when 

5 DISCUSSION AND CONCLUSIONS 



 
 

46 
 

the board is powered by a 2,000 mAh battery. The result will be even more 
significant if the hardware platform used is more energy efficient. The Arduino 
MKR WAN 1310 LoRa platform has a deep sleep power consumption of 0.467 
mW, which is not very low. The measured deep sleep current consumption of 
116 µA is not very low for a modern microcontroller-based platform. As shown 
in Article VII, in the worst-case scenario (LoRa using SF12 for both uplink and 
downlink), the node lifetime was lengthened from 343 days (no compression 
implemented) to 562 days (RT-LRbTC implemented) using a 2,000 mAh battery. 

The other developed variations of the LRbTC algorithm are RT-LRbTC-2Δt 
and RT-WLRbTC-2Δt. RT-LRbTC-2Δt is similar to RT-LRbTC, but it has an 
inherent latency of two measurement intervals. When the previous linear line 
ends, it waits for one measurement interval to obtain a new measurement value 
and then uses the N latest values to calculate the regression line. The idea behind 
this version is that if the direction of the values changes and the line ends, then 
the latest values that are already out of the previous line can predict future values 
better. This same idea is taken further in the RT-WLRbTC-2Δt algorithm, which 
is similar to RT-LRbTC-2Δt but utilizes a weighted linear regression instead of a 
traditional linear regression. In a weighted linear regression, the last measured 
value is weighted to create a greater impact on the linear regression calculation. 
RT-LRbTC-2Δt and RT-WLRbTC-2Δt demonstrated some improvements in the 
CR compared with the RT-LRbTC algorithm for the temperature, air pressure, 
and wind speed datasets. The weighted linear regression-based variation did not 
show any better performance than the traditional linear regression-based version. 

Overall, this study shows that it is possible to achieve significant energy 
savings with simple compression algorithms in the wireless sensor node, 
together with the efficient use of sleep modes. Simple compression algorithms 
based on linear regression can obtain good CRs for environmental sensor data. 
There are more efficient compression algorithms available, but these methods 
can be more complex or may not have predictable latency. Simple linear 
regression-based compression algorithms did not show any rise in energy 
consumption due to the calculations in the experiment with a sensor node. 
Moreover, if the previous history datasets are available for certain geological 
locations for environmental magnitudes, these datasets can be used to predict 
certain compression algorithm performances to compress the same magnitudes 
with the same measurement setup. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Tässä tutkimuksessa kehitettiin kevyitä anturidatan pakkausmenetelmiä, jotka 
soveltuvat yksinkertaisiin ja alhaisen laskentatehon omaaviin langatonta Inter-
net-yhteyttä käyttäviin anturisolmuihin. Tällaiset anturisolmut ovat usein akku-
käyttöisiä, ja siten energian kulutuksen minimointi on tärkeää laitteen toimin-
taiän pidentämiseksi. Akkujen vaihtaminen tai lataaminen on merkittävä kustan-
nus, jos anturisolmujen määrä on suuri ja ne sijaitsevat laajalla alueella. 

Väitöskirjassa tutustuttiin ensin tyypillisiin energiatehokkaan reunalasken-
nan menetelmiin ja niiden vaatimuksiin. Näiden selvitysten pohjalta on keskityt-
ty pääasiassa kehittämään pakkausalgoritmeja, jotka pystyvät pakkaamaan an-
turidataa reaaliajassa sitä mukaa kuin uusia mittausarvoja tulee. Tutkimuksen 
tuloksena on esitelty useita versioita lineaariseen regressioon perustuvista pak-
kausalgoritmeista, joiden lähtökohtana on ollut algoritmin aiheuttaman viiveen 
vakiointi ja pienentäminen. 

Tutkimuksessa on lisäksi testattu datan ominaisuuksien vaikutusta kehitet-
tyjen pakkausalgoritmien pakkaustehokkuuteen. Löydettyjen vaikutusten avulla 
on mahdollista ennustaa algoritmin pakkaustehokkuutta tietynlaisen datan pak-
kaamiseen. Ympäristösuureet kuten lämpötila, ilmanpaine ja tuulennopeus käyt-
täytyvät tietylle mittauspaikalle tyypillisellä tavalla vuodesta toiseen, jolloin his-
toriadataa voidaan käyttää ennustamaan algoritmin kykyä tulevan mittausdatan 
tehokkaaseen pakkaamiseen. 

Kehitettyjä algoritmeja on testattu pääasiassa simuloimalla, mutta myös 
implementoimalla algoritmeja sulautettuun anturisolmuun. Anturisolmu hyö-
dynsi langatonta LoRaWAN-verkkoa anturidatan lähettämiseen Internetiin. An-
turisolmun energiankulutusta mitattiin sekä hyödyntäen pakkausalgoritmeja 
että ilman niitä. Mittaukset osoittivat kehitettyjen pakkausalgoritmien hyödyntä-
misen vähentävän anturisolmun energiankulutusta merkittävästi ja siten akku-
käytössä pidentävän sen toimintaikää huomattavasti. 
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Abstract. Internet of Things is evolving heavily in these times. One of the ma-

jor obstacle is energy consumption in the IoT devices (sensor nodes and wire-

less gateways). The IoT devices are often battery powered wireless devices and 

thus reducing the energy consumption in these devices is essential to lengthen 

the lifetime of the device without battery change. It is possible to lengthen bat-

tery lifetime by efficient but lightweight sensor data analysis in close proximity 

of the sensor. Performing part of the sensor data analysis in the end device can 

reduce the amount of data needed to transmit wirelessly. Transmitting data 

wirelessly is very energy consuming task. At the same time, the privacy and se-

curity should not be compromised. It requires effective but computationally 

lightweight encryption schemes. This survey goes thru many aspects to consider 

in edge and fog devices to minimize energy consumption and thus lengthen the 

device and the network lifetime. 

Keywords: IoT, Edge Computing, Fog Computing, sensor data compression. 

1 Introduction 

The Internet of Things (IoT) has been in focus on recent years. There are already 

billions of devices connected to the Internet and the amount of the Internet connected 

things is estimated to grow exponentially in these years [1, 2]. There are forecasts that 

by 2020 there will be more than 50 billion devices connected to the Internet [3]. 

These connected devises and things are very heterogeneous and require very different 

and application specific solutions and approaches. [1] The IoT as a concept was first 

introduced in 1999 by Kevin Ashton and it was related to the devices connected to the 

Internet via RFID connection. [1] The term IoT was mainly forgotten for years after 

that but it was reinvented some years ago. The exact definition of the IoT is still not 

described clearly, [1] but the technologies, solutions and the use of the IoT is all the 

time emerging. 

There are already solutions of the IoT in use but the real success of the IoT de-

pends on the standardization, which allows the compatibility, interoperability, relia-
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bility and effectiveness of the IoT solutions. The IoT devices and things should be 

able to autonomously communicate with other devices or things and connect data to 

the Cloud. The IoT describes the next generation of the Internet, where physical 

things are connected to the Internet and can be identified and accessed via Internet. 

[1] 

There are presented and used many solutions and techniques to save energy in the 

IoT devices. These methods are mainly based on reducing wireless broadcasting be-

cause it is more energy consuming to broadcast data than pre-analyze it in close prox-

imity of the source (sensor). [4] The IoT sensor data need to be compressed efficiently 

to reduce and minimize the cost of broadcast and storage [5]. At the same time, many 

IoT devices are battery powered wireless devices. Thus, these IoT devices can be 

located in places where changing the battery might be impossible or at least battery 

replacement cost is one of the most critical source of cost in this kind of devices. [2] 

These devices are often very limited in computing power. So often, it is the case that 

it is possible to perform only very light analysis of the collected data in locally. In 

addition, the IoT itself is very constrained in terms of bandwidth, energy and storage. 

[5, 6] 

The IoT systems and the whole IoT sector is very heterogeneous. The things vary a 

lot and may move geographically and they need to interact with other things and 

Cloud systems in real-time mode. When designing the IoT systems it should be taken 

account scalability and interoperability of the heterogeneous devices. Design of the 

IoT applications and systems require involvement of many factors like networking, 

communication, business models and processes, and security. The IoT architecture 

should be very adaptive to make IoT devices to interact with other devices and with 

the Internet. [1] 

2 Definition of Edge and Fog 

The term Fog Computing was introduced by Flavio Bonomi in 2012. [7, 8] It refers to 

dispersed Cloud computing which is vital in several applications where the IoT devic-

es collect data in the local network and the actions required from analyzed data take 

place in the same local network. [9] In that kind of case, it is not efficient to send all 

the data to centralized Cloud to be analyzed. It is not even possible to send data to the 

Cloud for analysis in many latency critical applications. The term Edge Computing 

means that computing happens in close proximity of data sources in the edge of the 

network. In many cases the terms Edge Computing and Fog Computing are inter-

changeable. But it can be defined that Edge refers more to the device side very close 

to data sources and Fog refers more infrastructure side like gateways and routers. [10] 

Cloud service providers locate their data centers often in rural areas to minimize 

costs. This lead to high latencies because customers are often located far from data 

centers. [11] Many IoT applications require very short response times, some create a 

large amount of data that can be heavy for network and some applications are in-

volved with sensitive private data. Cloud computing cannot reply all these require-

ments so the Edge Computing is one answer for these challenges. [10] Latency criti-



cal applications are for example many intelligent transportation and traffic systems, 

autonomous vehicles, virtual reality (VR) and augmented reality (AR) applications. 

[7] Also many safety critical applications cannot rely on the connection to the Cloud. 

For example, vehicle-to-vehicle connection or data from vehicles can be used to avoid 

collision, but that analysis need to be done locally or in very close proximity located 

Cloudlet [7]. The Cloudlet means smaller size local datacenter. Safety critical systems 

are also very common in industrial automations systems. These kind of applications 

cannot tolerate possible Cloud outages and they often need low and predictable laten-

cy [7, 11]. This kind of new Fog Computing paradigm is not a replacement of the 

centralized Cloud. These concepts are more complementary to each other. [9, 11] In 

some applications the Cloud is not even possible to be used; this kind of situation 

happens for example in the modern aircraft. The modern aircraft can generate nearly 

half a terabyte of data from its sensors in one flight. [7] This amount of data cannot be 

sent to the Cloud for real time analysis from the middle of the ocean. Only possibility 

is to analyze the data locally and then perhaps download the raw data after flight for 

further analysis that can be executed in the Cloud. Even in ground level, the current 

wireless networks will be challenged with the amount of data that the huge amount of 

devices will produce in the near future [10]. Most of the data produced by the IoT 

devices will be analyzed locally in the Edge devices and will never be transmitted to 

the Cloud. [10] 

In Fig. 1 is illustrated the basic architecture of the IoT infrastructure including 

Edge and Fog devices. The difference between the Edge and the Fog devices is not 

always as clear as presented in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Edge and Fog architecture in IoT. [12] 

Fog and Edge devices can be efficient data servers, routers, gateways, any kind of 

embedded systems or even end node like vehicles or sensors with some computational 

capability. [11] The Edge devices can be small-embedded devices with very energy 

efficient and limited micro controller or more capable single board Linux-computer 

like Raspberry PI. In Fig 1. typically sensors are small wireless sensor tags and Smart 

Edge Devices are gateways for sensors. Smart Edge Device (gateway) is connected to 
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the Internet via wireless or wired connection. Edge and Fog devices are very hetero-

geneous in nature with different hardware architectures and they run various different 

Operating Systems (OS). There are also available numerous different wireless access 

technologies and sensor network topologies [11]. This heterogeneous nature of Edge 

and Fog devices and systems avoid developing generic and easily adaptable solutions 

for Edge and Fog analytics. It is predicted that the Edge Computing could have as big 

impact in society as Cloud Computing has [10]. 

3 Benefits of the Edge Computing 

While the Cloud Computing is very efficient method for data processing having a 

huge amount of computing power, [10] the Cloud Computing cannot meet and ensure 

the Quality of Service (QoS) in the IoT due to unstable latency and possible outages 

in the network connection and the Cloud servers. Fog or Edge Computing is an an-

swer for the problem. In the Edge Computing the majority of the computing is carried 

out in close proximity of the data source. There are researches done that proof the 

Edge Computing reduction in response times and in energy consumption. By doing 

part of computation and analysis in the Edge reduce the needed wireless connection 

bandwidth. For example, photos can be compressed in the Edge before transmitting to 

the cloud. [10] Even if most of the data analysis is done in the Cloud, it is recom-

mended to do some preprocessing for sensor data in the Edge before uploading it to 

the Cloud. In minimum this kind of preprocessing can be only filtering erroneous 

sensor data. More advanced preprocessing can mean different compression methods 

like sending only the information of the variation/alteration of the sensor values and 

not absolute values. This kind of preprocessing can reduce significantly the amount of 

data needed for upload data in the Cloud [10]. 

Security and privacy critical application can also benefit from the Edge/Fog Com-

puting approach where the original raw and sensitive data is not sent to the centralized 

Cloud thru public Internet. [7] Data sent to the Cloud can be denatured data; for ex-

ample, in images the faces can be blurred. [7] Applications producing very sensitive 

and private data are for example different healthcare applications. 

Also home automation systems sending information to the Cloud could include 

some private sensitive data. For example, information of the water and electricity 

usage could easily tell if the house is vacant or not. If the computation is kept in close 

proximity of this data (in the Edge), it could be decent solution to keep sensitive data 

in private. [10] But if this home automation application is connected to the Internet, 

this sensitive data could be reachable for inappropriate quarters. So the cybersecurity 

is vital for all IoT applications whether the sensitive data is transferred to the Cloud or 

not. 

4 Edge and Fog Computing Challenges 

Fog and Edge devices are very heterogeneous. [11] It is difficult to design easily 

adaptable and generic solutions for the Edge Computing. Most applications are indi-



vidual and cannot utilize generic computational, data aggregation and data analysis 

methods. There are different hardware platforms and different operational systems. 

Hardware platforms can vary from very simple micro-controller based platform with 

very limited memory to single board Linux-computer like Raspberry PI that is rather 

powerful platform. Virtualization is one way to handle multiplatform and multi-OS 

challenge. 

One possibility towards generic solutions to be used in different and computation-

ally restricted platforms is a container-based approach. Container-based virtualization 

can be considered as a lightweight virtualization solution. Because of lightweight 

nature, the containers can run in computationally limited IoT-platform like Raspberry 

PI. [13, 14]  Containers could be used in the different platforms to perform same 

tasks. Anyway, these platforms could not be very limited basic embedded micro-

controller based platforms, but require more computational power and generic operat-

ing system (OS) like Linux. 

In [15], has been tested the ARM-based Single Board Computers with Docker con-

tainers and compared the overall efficiency in power consumption to the native exe-

cutions. The performance evaluation showed almost negligible impact with container 

virtualization compared to native executions. 

4.1 Methods for Reducing Energy Consumption in Wireless Sensor Networks 

Several energy-efficient routing algorithms have been proposed for wireless sensor 

networks (WSN) but they are mostly not suitable for the IoT. Current IoT devices are 

mostly static and follow tree-based structure. [16] Dynamic routings developed for 

WSN architectures are not suitable for the IoT. The IoT network is often a complex 

large scale network and dynamic routing is difficult to be used effectively in this kind 

of network. [17] 

The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol utilizes sever-

al methods and techniques to reduce energy consumption in WSN. [18] LEACH is the 

most popular routing algorithms used in WSNs [19]. There are several variations and 

further developments of LEACH protocol like LEACH-C and ENHANCED LEACH 

for example [16, 20]. Weight energy efficient clustering (WEEC) is an extended ver-

sion of LEACH.  In WEEC the energy efficiency optimization is done by cluster head 

(CH) selection procedure. Every node in the sensor network can be elected as a clus-

ter head. WEEC is a single-hop routing protocol. [19] 

In [16], the authors have presented a cluster head selection for energy optimization 

(CHSEO) algorithm to reduce the overall energy consumption in the IoT network. 

The CHSEO algorithm is based on selecting the optimal cluster head of the sensor 

nodes to reduce overall energy consumption. Hierarchical IoT sensor node framework 

is composed of different node types. Sensor node is sensing, aggregating and forward-

ing data, Relay node is receiving the data from sensor nodes and transmit it to the 

cluster head. Cluster head collects, aggregates and transmit the data to the base sta-

tion. Base station collects, aggregates, analyses and process the data. The CHSEO 

algorithm was proved to have better performance than traditional WSN mechanism in 

energy consumption and network lifetime.  
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Other example of hierarchical network architecture to reduce IoT network energy 

consumption is presented in [17]. It is based on hierarchical relay node placement 

with energy efficient routing mechanism. Ad Hoc On-Demand Distance Vector 

(AODV) routing protocol has been used. This proposed network architecture gives 

balanced energy consumption and thus better network lifetime. [17] 

Modern long-range low-power IoT networks (NB-IoT, LoRa, SigFox) have star 

topology, so intelligent routing algorithms are out of the question. [21] In these tech-

nologies, the ultra-low energy consumption has been achieved by using very limited 

bandwidth and/or intelligent modulation. 

4.2 Data Compression Methods in Edge Device: Lossy and Lossless Methods 

In the IoT, huge amount of sensors are generating data and that data should be stored 

and processed with minimal loss of information. Sensor data compression is not a 

new discipline and several different compression algorithms are presented. [5] There 

are also very energy efficient contemporary compression methods for resource con-

strained IoT-nodes presented [6]. Data aggregation is also related to the data compres-

sion. Data aggregation here means for example to combine multiple sensor data and 

filter the redundant data. Data aggregation in wireless sensor network reduce the 

amount of data needed to transmit to the base station and thus reduce energy con-

sumption. [18] Most of the compression methods presented for the IoT sensor data 

compression are lossy compression methods. Lossy methods are more efficient in 

compression compared to lossless methods. Lossy methods try to identify meaningful 

data points and discard redundant data. Different compression algorithms perform 

differently with different types of data sets. Also their computational complexity dif-

fers. [5] 

Lossy compression methods can be divided in two groups: Time domain and 

Transform domain. Time domain compression algorithms compress time series data 

directly without any transformation. Transform domain compression methods trans-

form data into a different domain. Well-known transform domain methods are for 

example Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). [5] 

Different lossy compression algorithms are listed in Table 1. 

Table 1. Lossy Compression Algorithms. [5, 6] 

Name of the Algorithm Type 

Box-Car Time Domain 

Backward Slope Time Domain 

OSIsoft PI software Time Domain 

Compression extracting major extrema Time Domain 

PLA, PCA Time Domain 

Critical Aperture (CA) Time Domain 

Fractal Resampling (FR) Time Domain 

Lightweight Temporal Compression (LTC) Time Domain 

Fast Fourier Transform (FFT) Transform Domain 

Discrete Cosine Transform (DCT)  Transform Domain 

Chebyshev Transform (CH) Transform Domain 



Wavelet Transform (CWT, DWT, WPT) Transform Domain 

 

In ref. [5] the authors have selected four different lossy compression methods and 

compared their applicability to different signal characteristics. Compared methods 

were Critical Aperture (CA), Fractal Resampling (FR), Chebyshev Transform (CH) 

and Wavelet Packet Decomposition (WPD). Data used for comparison has been di-

verse publicly available sensor datasets. Comparison has been made by comparing the 

compression ratio with same Percentage Root mean square deviation (PRD). PRD 

level used in comparison has been 5 %. Used datasets were different in composition. 

Some were quasi-periodic (QP), some non-stationary (NS) with sudden transient 

spikes and some non-stationary (NS) with periodic seasonal components. [5] 

As a result, the CH was the most effective method for QP data in terms of com-

pression ratio. For NS with transient spikes data, the CA, FR and WPD were remark-

ably more effective than CH method. For NS with periodic seasonal data the WPD is 

the most effective method. [5] 

In [5], it is also shown that WPD requires considerably more computational time 

compared to the other methods. This means a higher energy consumption. In ref. [6] 

has been introduced lightweight compression algorithm for spatial data which is more 

energy efficient than wavelet compression. This lightweight compression algorithm 

can reduce energy consumption to half of the original consumption. This lightweight 

and energy-efficient compression algorithm is based on a lightweight temporal com-

pression method named LTC [22]. LTC is tunable in accuracy and suitable for the 

datasets that are largely continuous and slowly changing. LTC is widely used method 

due to its good compression performance and low computational complexity. [6] LTC 

also requires very little storage compared to many other compression techniques. LTC 

is very effective for many environmental type data (temperature, humidity) which are 

approximately linear in small enough time window. Thus, LTC leverages temporal 

linearity of environmental data to compress that data. [22] 

5 Wireless Technologies for Energy Efficient IoT 

For years the main wireless technology for transmitting sensor data with low energy 

consumption was IEEE 802.15.4 (mostly used protocol is called ZigBee). ZigBee was 

designed for ultra-low energy consumption and it has been popular in WSNs. [21] 

IEEE 802.11 (WiFi) has also been available for years but traditionally it has been 

used for high data rates and it has had rather high energy consumption. To address 

this energy consumption problem, there is available Power Saving Mode (PSM) in 

IEEE 802.11. [18] This Power Saving Mode is developed for battery powered mobile 

devices. IEEE 802.11 was not designed for sensor applications but with PSM it has 

proofed to be potential alternative for other technologies used for WSNs. In some 

cases, the IEEE 802.11 PSM can outperform the IEEE 802.15.4 in energy consump-

tion. [23] Bluetooth Low Energy (BLE) is very popular and widely used due to its 

availability. It is already available in most modern smartphones and it is widely used 

in wearable devices like heart rate monitors and other monitoring applications. 
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ZigBee, BLE and WiFi uses the 2.4 GHz ISM frequency band while ZigBee is avail-

able also in sub-1 GHz band (868 and 915 MHz). IEEE 802.11ah version address for 

requirements of the IoT, like increased range, increased reliability and low energy 

consumption. IEEE 802.11ah is operated in sub-1 GHz range. [21] 

Using sub-1 GHz band increases the range and penetration thru obstacles (build-

ings, constructions). Sub-1 GHz band is also less crowded compared to popular 2.4 

GHz band and thus these technologies are less vulnerable for interference. [24] 

ZigBee, BLE and WiFi all have rather short range, even if sub-1 GHz band is used 

(ZigBee and WiFi). As an answer for this limitation there are recent developments in 

long-range technologies like SigFox and LoRa. These are so called low-power wide-

area-networks (LPWAN) [25]. SigFox is an ulta-narrow-band technology and it uses 

sub-1 GHz band (868 MHz in Europe). Its range is announced to be even up to 40 km. 

Direct competitor for SigFox is the LoRa. It uses the same frequency band as SigFox 

but its modulation is based on Chirp Spread Spectrum (CSS). [21] CSS modulation 

was developed in the 1940’s and it is very robust for interference and multipath fad-

ing. In CSS modulation the information in spread to different frequency channels and 

it has noise like properties. [26] 

Novel cellular based wireless technology for IoT solutions is Narrow Band-IoT 

(NB-IoT) which uses narrow bandwidth for lower power consumption. [27] The 

Third Generation Partnership Project (3GPP) introduced the NB-IoT in LTE Release 

13. NB-IoT bandwidth for both uplink and downlink is set to 180 kHz. It is exactly 

size of one physical resource block (PRB) in LTE standard. [28] 

In Table 2 has been combined the main characteristics of the main WSN technolo-

gies used in the IoT. LPWAN technologies have long range and very limited data 

rate. ZigBee, BLE and WiFi have much higher data rate but the range is very limited. 

Table 2. Wireless technologies summary for IoT. [1, 23, 24, 26] 

Technology Band Topology Announced range Data rate 

802.15.4 2.4 GHz / 0.9 

GHz 

Meshed 50 m 0.25 Mb/s 

BLE 2.4 GHz Scatternet 10 m 0.125 – 2 Mb/s 

802.11 PSM 2.4 GHz Star 100 m 11 Mb/s 

802.11ah 0.9 GHz Star 100m – 1 km 0.15 – 78 Mb/s 

SigFox 0.9 GHz Star Up to 40-50 km 100 b/s or 1000 

b/s 

LoRa 0.9 GHz Star Up to 15 km (subur-

ban), 45 km (rural) 

0.25 – 50 kb/s 

NB-IoT 700-900 MHz Star Up to 35 km 20-65 kb/s 

 

As both SigFox and LoRa uses unlicenced ISM band, there is no guarantee for laten-

cy. For latency critical applications, the NB-IoT is better choice while SigFox and 

LoRa are suitable for low-cost projects with wide area coverage [26]. NB-IoT latency 

is maximum 10 seconds according to the standard, while SigFox and Lora can have 

latency of 10s of seconds. [27, 28] Lora and SigFox are both very energy efficient 

technologies with very large range. BLE is also very energy efficient in its range. [21] 



6 Energy Efficient IoT Protocols 

The most common IoT application protocols are MQTT, CoAP, XMPP and AMQP. 

MQTT (message queue telemetry transport) and CoAP (constrained application pro-

tocol) are designed especially for resource constrained devices like IoT end nodes and 

gateways. [29, 30] 

MQTT protocol is a publish-subscribe messaging protocol with minimal band-

width requirements. It uses TCP (transmission control protocol) for transport. It is 

designed to be used in devices with restricted computational power and limited 

memory. MQTT is considered as a perfect messaging protocol for M2M and IoT 

applications because of its ability to function within low power, low memory and 

cheap devices with low bandwidth networks. [29] 

CoAP protocol is a request-response protocol but it can function as a publish-

subscribe mode too. CoAP uses UDP (user datagram protocol) for transport but it can 

be used for TCP too. CoAP has a wide acceptance for constrained devices. [30] 

In ref. [30] the authors have made comparison and experimental analysis between 

MQTT and CoAP. As a result they have found that MQTT consumes more bandwidth 

for transferring same payload than CoAP. But both protocols are efficient in terms of 

energy consumption. 

In ref. [31] have been evaluated the performance, energy efficiency and resource 

usage of several IoT protocols (MQTT, CoAP, MQTT-SN, WebSocket and TCP). As 

a result, the authors found that MQTT and CoAP protocols are largely affected by the 

packet size. In generally CoAP is the most efficient in terms of energy consumption 

and bandwidth usage. But MQTT protocol is more reliable. 

XMPP (extensible messaging and presence protocol) and AMQP (advanced mes-

sage queuing protocol) are other popular protocols but they require more resources 

and they are not so suitable for resource constrained devices. 

7 Security and Privacy Issues in the Edge 

Privacy and security is a very big issue and concern in the IoT systems and applica-

tions. In the IoT systems, the end nodes (IoT devices) are connected to the Internet 

and thus these devices are reachable from all over the Internet. This kind of devices 

can be for example IP-cameras, health monitors and wearable devices or even WiFi 

connected toys. These devices can be connected by others if not protected properly. 

Ownership of the collected data is other issue to take account. If the data is left on 

edge device for storage and analysis, then there are no ownership problems as the 

owner of the device can have all the rights for that data. [10] 

Battery powered IoT devices have very limited computational power, so complex 

encryption techniques require significant amount of computing and thus increase 

energy consumption. Lightweight encryption algorithms for the IoT devices have 

been developed.  

Encryption scheme can be symmetric or asymmetric and both can be used in the 

IoT devices. In symmetric encryption scheme only one key is used to encrypt and 
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decrypt the data. Both sender and receiver need to know the same key. In asymmetric 

encryption scheme two distinct keys are used. One for encrypting and other for de-

crypting. The advantage here is that the encrypting key can be public key and availa-

ble to anyone. For asymmetric scheme the key need to be longer than in symmetric 

scheme to be secure. Thus calculations needed are longer than in symmetric scheme. 

Famous asymmetric encryption schemes are Rivest, Shamir, Adleman (RSA) scheme 

and Elliptic Curve Cryptography (ECC). [32] 

Several researches have been done to compare ECC and RSA schemes to each oth-

er in regarding to encryption/decryption time and key length. The ECC has proved to 

be more efficient with shorten encryption/decryption time, smaller storage and in 

generally more energy efficient than RSA. [33] 

In ref. [34] the authors have presented lightweight asymmetric encryption scheme 

called AAβ and in ref. [35] the authors have made comparison in energy consumption 

between AAβ and RSA. The AAβ outperforms the RSA significantly in encryption 

and decryption. 

8 Conclusions 

In this study, a comprehensive study of the energy efficient Edge Computing has been 

carried out. There are a lot of research published from the different phases and aspects 

to reduce energy consumption in wireless end devices, but only few of them encom-

pass the subject broadly. Minimizing energy consumption is one of the key aspects to 

carry out in the IoT device and system development. IoT end devices are often battery 

powered devices with wireless connection. Thus the computational resources are con-

strained but at the same time these devices should be able to do pre-processing and 

analysis for sensor data to reduce transferred data via wireless connection. 

Most methods for reducing energy consumption in the IoT devices are concentrat-

ed to reduce wireless data transfer. Wireless data transfer is often the most energy 

consuming operation in the IoT device. In addition, many latency critical applications 

are pushing the development towards Edge Computing. 

At the same time when more and more data analysis is carried out in close prox-

imity of the sensors (in Edge and Fog); there are available several novel wireless 

technologies to transfer sensor data with low energy consumption. Considering ener-

gy consumption in every phase from the sensor to the Internet, it is possible to reduce 

energy consumption significantly. Many of these techniques are studied in this sur-

vey. 
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Abstract—In energy production, peat extraction has a 
significant role in Finland. However, protection of nature has 
become more and more important globally. How do we solve this 
conflict of interests respecting both views? In peat production, 
one important phase is to drain peat bog so that peat production 
becomes available. This means that we have control over how 
we can lead water away from peat bog to nature without water 
contamination with solid and other harmful substances. In this 
paper we describe a novel method how fouling of water bodies 
from peat bog can be controlled more efficiently by using 
weather forecast to predict rainfall and thus, minimize the 
effluents to nature. 

Keywords—Internet of Things, open data, predictive control, 
rain prediction 

I. INTRODUCTION 
Today, nature protection has become a more and more 

important issue. All technology solutions to help avoid nature 
resource overconsumption are welcome.  

In Finnish peatlands the peat production area is 
approximately 68,000 hectares. In 2016, there were 45,000 
hectares of energy peat production and 5,000 hectares of 
peatland in the production of environmental peat. During the 
2000s, the production of energy peat has averaged about 400 
megawatt hours per hectare. The total output of energy peat 
has varied from 8 terawatt hours to 35 terawatt hours in the 
2000s [1]. 

Peat production is seasonal. The peat season is in normal 
years from mid-May to early September. The average summer 
lasts 40-50 days, when production is possible. The production 
is also weather dependent, and the yield per hectare varies 
both at the annual and regional levels [1]. 

Views on the harmfulness of peat production on 
watercourses are based on obsolete data and beliefs about peat 
production. These beliefs are bolstered by the fact that peat 
production has been accused of water contamination [1]. 

The central part in avoiding fouling of water bodies is 
predictable control of runoff water. An important role in this 
process is the ability to filter in significant quantities solid and 
other harmful substances before water accesses water bodies. 
The present method in Finland is based on pumping of the 
water from drainage reservoirs (pump pool) to filtering field 
by measuring the water height in reservoirs. 

 In this research paper, we introduce a novel method to 
powerfully filter solid and other substances from water. Our 
solution is based on using IoT technology with weather 
forecast and rainfall measurement locally in peat bog. It 
stabilizes the flow of water from the drainage reservoirs 

significantly and thus notably reduces the load on the peat 
production area. 

II. COMBINING SENSOR DATA AND WEATHER FORECASTS 
IN IOT SYSTEM 

There are some experiments of using weather forecasts for 
prediction in the IoT systems, for example in different 
agricultural systems and applications. Reference [2] proposes 
a smart water dripping system for the farmers to irrigate the 
farms efficiently. It is mainly based on local sensors like soil 
temperature, moisture and pH. The systems also collect the 
weather forecast information from websites and use its 
information to decide if the watering is needed. Due to 
possible forecast inaccuracy, the system gives for the operator 
possibility to manually override the system suggestion [2]. 

A farming automation system for plants watering which 
uses the weather prediction based on fuzzy logic algorithm has 
been introduced in [3]. The system is based on sensor data and 
forecast from the weather service provider. The system uses 
fuzzy logic algorithm to calculate if the plant should be 
watered. Sensor data includes the soil moisture data and rain 
sensor data. Weather prediction data is collected from two 
different weather service providers (WSP Open Weather and 
Weather Underground) [3]. 

Rainfall forecasts have been used in cyber physical 
systems for predicting and preventing flood hazards. Yang et 
al. [4] have used an ensemble numerical prediction system to 
get more reliable rainfall forecast. The ensemble numerical 
system used is based on 20 ensemble units. These ensemble 
units are various numerical weather prediction models with 
different configurations. The system is based on worldwide 
observation data of weather parameters. This data is obtained 
from various sources like satellites, atmospheric sounding 
devices, buoys, aviation routine weather reports, ships, and 
other sources. The ensemble system provides a 72-hour 
rainfall forecast every six hours with 5 km spatial resolution. 
Then the statistical artificial neural network method has been 
used to combine the 20 ensemble rainfall forecasts to 
improved 24-hour forecast. To further improve the short-term 
rainfall forecasts the real-time radar data has been included for 
the model [4]. 

Weather forecasts together with local weather data have 
been used to forecast crop frost. If the frost occurs in the 
growth season, the economic losses can be very significant for 
the farmers. The weather forecast accuracy to predict actual 
temperatures in the field has been researched by using several 
regression techniques. According to the different regression 
techniques used, it is not possible to predict the actual 
temperature in the field from the weather forecast with the 



accuracy needed for predicting the frost.  More advanced and 
complex techniques have been proposed to be tested like 
genetic algorithm and neural network [5]. 

Weather forecasts have been also used for predicting the 
heat load for family houses [6][7]. Heating systems based on 
hot water circulation have the disadvantage and challenge of 
the long response time. It cannot react quickly enough for the 
outside temperature changes. By using the weather forecast as 
one input, it is possible to react proactively to weather changes 
and it can improve the comfort and reduce energy 
consumption. 

Weather and especially rainfall forecasting is a 
challenging task locally. There is a lot of research done in that 
field. There are several methods to weather forecast. One of 
the most used methodologies is complex time series [8][9]. 
One of best-known methods for time series analysis are 
Exponential Smoothing [10] and Autoregressive Integrated 
Moving Average (ARIMA) [11]. 

Prediction of rainfall is a rather complex physical 
phenomenon. For this reason, methods such as machine 
learning are used today. Examples of such methods are among 
others Artificial Neural Network (𝐴𝐴𝐴𝐴𝐴𝐴) [12], k-closest 
neighbor (𝑘𝑘𝑘𝑘𝑘𝑘) regression [13], Radial Basis Support Vector 
Regression (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) both separately and in combination as a 
hybrid model [14]. 

III. SMART PUMPING SYSTEM 
Water treatment in the peat production area is a very 

important and challenging task. For production, the peat needs 
to be dry. Water is flowing via ditches to the separated 
reservoirs. From the reservoirs, the water is pumped to the 
filtering field where the vegetation and soil is filtering the 
water. Water is filtered through the field that restrains the 
solids and nutrients before the water is flowing to the 
watercourses [15]. 

The filtration through the filtering field is more effective 
if the pumping and water flow through the field is as constant 
as possible. In traditional pumping systems, the pumping 
starts when the water level is high in pump pool and stops 
when the water level is rather low. The pumping takes place 
in constant speed. Therefore, the pumping and water flow is 
not smooth but occurs more in bursts. 

With the frequency converter, it is possible to even out the 
pumping by slowing down the pumping speed as the water 
level in the pool is lowering. This is a very simple and 
effective method to even out the water flow through the field. 
It is also possible to program to the frequency converter a 
ramp-up time for soft starting and to lower the starting burst 
in water flow. 

The next step to even out the pumping even more is to use 
the predictive pumping. When the weather forecast is 
predicting rain or if the rain has already started, but the water 
is still flowing to the pool, it could be possible to start pumping 
while the level in the pool has not yet reached the pumping 
level. This way the pool could buffer more water and the 
pumping of the raining water would take more time and the 
filtering field should filter the water more effectively. 

There is a delay in water flow from the peat production 
area to the reservoirs. The field from which the raining water 
is flowed via ditches to the pool can be several tens of 

hectares. The flowing speed depends on, for example how dry 
the soil is. Dry soil can absorb more water thus lowering and 
slowing the water flowing to the pool. 

This paper presents the implementation of the smart 
pumping control and the algorithm for the predictive 
pumping. The predictive pumping is based on the weather 
forecast for the area and the local weather station data together 
with the actual water level in the pump pool. 

The construction of the IoT pump control can be seen in 
Fig 1. The decision is made in the ThingsBoard.io Open 
Source IoT platform, which is located in the cloud server. The 
data gathered to the IoT platform are the weather forecast 
(rainfall prediction from open data) data, local weather station 
data and the actual water level information. 

The water level in the pump pool is measured with the 
hydrostatic level transmitter (water level transmitter). Its 
output signal is 2-wire 4-20 mA traditional current loop, 
which is widely used in automation technology due to its 
immunity for electromagnetic disturbance. The current loop 
level is converted to the digital I2C-bus with separate 
converter and connected to the Raspberry PI Linux computer. 
The Raspberry PI sends the water level data to the IoT 
platform (cloud) via 3G/4G cellular network. 

The other data inputs for the IoT platform are local 
weather forecast (from Finnish Meteorological Institute) and 
data from local weather station located in close proximity to 
the pump station and peat production area. 

The Finnish Meteorological Institute (FMI) offers several 
different data sets as Open Data. FMI offers weather forecast 
for 17,000 places in Finland. Weather forecast in open data is 
updated four times a day, thus every 6 hours. The rainfall 
forecast for the closest offered place from the peat production 
area was the main focus in this case [16]. 

The local weather station is located in close proximity of 
the pump station. Weather station sends the data to the cloud 
server (weatherlink) via cellular network and the data is 
obtained from there via interface to the IoT platform. The 
main factor gained from the local weather data in the 
predictive algorithm is the rain during the last hour. Water 
rained during last hour is still partly flowing to the reservoir, 
thus it does not immediately raise the water level in the 
reservoir. 

The analytics from the obtained data is carried out on the 
IoT platform. According to the analytics, it creates the 
information for the current signal needed for guiding and 
controlling the frequency converter.  This information is sent 
to the Raspberry PI via wireless 3G/4G connection and the 
Raspberry PI creates a new control signal with I2C/current (4-
20 mA) converter. This current loop is connected to the 
frequency converter. 

The flow meters are located after the filtering field. The 
flow meter data can be used to evaluate the smart pumping 
effectiveness to even out the water flow after the filtering 
field. It cannot be used for real time feedback to the pumping 
because there is a delay when the effect of pumping can be 
seen in water flow. 

In a pilot case, the water level in the measuring well can 
vary from 0 meters to 3 meters. The frequency converter is 
programmed to keep the water level in 1.8 meters and the 



Fig. 1. The construction of the IoT pump control. 

range is approximately between 1.8 m to 2.2 m. Thus, the 
pumping starts when the water level has reached the 2.2 
meters. The pumping starts at nominal speed and it slows 
down stepless until the water level reaches 1.8 meters level. 

The predictive pumping algorithm can start the pumping 
before the water level reaches the 2.2 meters level. Moreover, 
with predictive pumping the water level can be pumped down 
to 1.5 meters level to yield to raining water. 

IV. PREDICTIVE PUMPING ALGORITHM BASED ON SENSOR 
DATA AND WEATHER FORECAST 

The algorithm used in the IoT platform is creating the 
information for control signal needed. The first version of the 
pumping algorithm is rather simple but it will be developed 
further in the future. 

The control algorithm inputs are:  

• next hour rainfall forecast from FMI open data R1 
(mm). 

• last hour accumulated rainfall from the local weather 
station R2 (mm). 

• actual water level in pump station L1 (mA) 

The control signal L2 (mA) for the frequency converter is: 

𝐿𝐿2(𝐿𝐿1,𝑋𝑋1,𝑋𝑋2) = � 𝐿𝐿1, when 𝐿𝐿1 < 𝑦𝑦
𝐿𝐿1 + 𝑋𝑋1 + 𝑋𝑋2,  when 𝐿𝐿1 ≥ 𝑦𝑦 (1) 

 
𝐿𝐿1, 𝐿𝐿2,𝑦𝑦 ∈ [4,20] 

 
𝑋𝑋1,𝑋𝑋2 ∈ [0,16] 

 

The X1 (mA) is the effect of the rainfall forecast on the 
control signal: 

𝑋𝑋1(𝑅𝑅1) =  �
0, when 𝑅𝑅1 < 𝑏𝑏

𝑎𝑎𝑅𝑅1, when 𝑏𝑏 ≤ 𝑅𝑅1 ≤ 𝑐𝑐
𝑑𝑑, when 𝑅𝑅1 > 𝑐𝑐

  (2) 

 
𝑅𝑅1, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ [0,∞[ 

 
𝑑𝑑 ∈ [𝑎𝑎𝑅𝑅1, 16] 

 

Where a is just a parameter to scale the control (slope) to 
the suitable level. The b is the minimum predicted amount of 
rain to take account (for example 0.5 mm/h), c is the limit for 
the predicted rain to be used for growing the X1 (thus the rain 
prediction higher than c is not raising the X1 anymore), d is the 
maximum for X1 (for example 14 mA). Maximum value for d 
is 16 mA but in real situation, it needs to be much lower. 

The X2 (mA) is the effect of the last hour accumulated rain 
measured in local weather station: 



𝑋𝑋2(𝑅𝑅2) =  �
0, when 𝑅𝑅2 < 𝑓𝑓

𝑒𝑒𝑅𝑅2, when 𝑓𝑓 ≤ 𝑅𝑅2 ≤ 𝑔𝑔
ℎ, when 𝑅𝑅2 > 𝑔𝑔

 (3) 

 
𝑅𝑅2, 𝑒𝑒, 𝑓𝑓,𝑔𝑔 ∈ [0,∞[ 

 
ℎ ∈ [𝑒𝑒𝑅𝑅2, 16] 

 

Where e is the parameter to scale the control level. The f 
is the minimum accumulated last hour rain to take into account 
(for example 0.5 mm/h), g is the amount of accumulated rain 
during last hour to be used for increasing the X2. The h is the 
maximum for X2. 

The parameters used in this pilot case were y = 12 mA, a 
= 2, b = 0.5 mm/h, c = 7 mm/h, d = 14 mA, e = 2, f = 0.5 mm/h, 
g = 7 mm/h, h = 14 mA. 

Thus the algorithm for weather (rainfall) prediction effect 
X1 was: 

𝑋𝑋1(𝑅𝑅1) =  �
0, when 𝑅𝑅1 < 0.5

2𝑅𝑅1, when 0.5 ≤ 𝑅𝑅1 ≤ 7
14, when 𝑅𝑅1 > 7

 (4) 

 

The effect of the local weather data: 

𝑋𝑋2(𝑅𝑅2) =  �
0, when 𝑅𝑅2 < 0.5

2𝑅𝑅2, when 0.5 ≤ 𝑅𝑅2 ≤ 7
14, when 𝑅𝑅2 > 7

 (5) 

 

Lastly, the final control signal for the frequency converter: 

𝐿𝐿2(𝐿𝐿1,𝑋𝑋1,𝑋𝑋2) = � 𝐿𝐿1, when 𝐿𝐿1 < 12
𝐿𝐿1 + 𝑋𝑋1 + 𝑋𝑋2,  when 𝐿𝐿1 ≥ 12 (6) 

 

The control chain in the IoT platform is presented in Fig 
2. The Raspberry PI sends the water level transmitter data to 
the IoT platform. In the IoT platform, the effects of rainfall 
forecast and the last hour accumulated rain are calculated and 
added to the water level data if the water level is over a certain 
threshold level. This data is sent to the Raspberry PI in the 
field. If the water level is not over the threshold, the water 
level data is returned back to the Raspberry PI unchanged. 

V. RESULTS 
The predictive pumping system has been in use during 

autumn 2018 for few months. Due to exceptional rain 
conditions during that period, reliably results and conclusions 
cannot be drawn yet. In addition, the predictive algorithm 
parameters were changed few times during the period. 
Originally, the parameters were set too conservatively and the 
predictive control did not activate easily. 

Data from local weather station and weather forecast for 
that location have been collected during autumn 2018. The 
rainfall forecast and actual rainfall from local weather station 
is presented in Fig 3. from 9 October 2018 to 13 November 
2018 in hour on an hour basis. Measuring period is rather short 
but at least during that observation period the correlation  

 
Fig. 2. Control chain in IoT platform. 

between forecast and actual level is rather small. If the weather 
forecast is predicting rain and it actually does not start to rain, 
the pumping can start without the real need. Anyway, this is 
not a big problem; however, it gives rise to water flow after 
the filtering field. As a disadvantage, this system starts 
pumping with nominal speed. In a predictive mode, it could 
be better to start pumping with modest speed. This way the 
water flow would be more even and the unnecessary pumping 
(due to false rainfall prediction) would not cause as large burst 
in water flow after the filtering field. This is one of possible 
tasks in further development. 

VI. CONCLUSIONS AND FUTURE WORK 
By using short-term (one hour) rainfall forecast we get 

quite good accuracy to the pump control. That way the rainfall 
prediction and pump control are simple. Better result to the 
control will be achieved by predicting rainfall using local 
weather information. In addition, one possibility is to use the 
rainfall forecast for the next few hours, not just the next hour. 
The forecast for following hours could have a smaller effect 
on the algorithm due to bigger inaccuracy. 

The next step in the research will be to add the weather 
forecast, local weather station information and the peat bog’s 
current capability of water absorption into the pump control 
algorithm. Water absorption depends on long-term rainfall 
and season. With these changes to algorithm, it is possible to 
get more even water discharge from the peat bog elsewhere to 
the nature. By adding water flow measurement information 
from the filtering field with water pumping information we get 
feedback from the algorithm by regression analysis. 



Fig. 3. Actual rainfall versus rain forecast from hour to hour. 

In this system, all the intelligence and calculations are 
done in the cloud server (IoT platform). This kind of system 
requires a reliable wireless internet connection from the field 
to the cloud and back. The water level data is constantly sent 
to the IoT platform and the IoT platform sends the new control 
data at the same rate back to the Raspberry PI. In rural areas, 
the internet connection is not always reliable enough. The 
algorithm used is not very complex; thus, the calculations 
could be done locally in the Raspberry PI. This kind of 
approach is called edge computing. The weather forecast from 
open data used is updated every six hours so in edge 
computing approach there is no need for a constant internet 
connection. The amount of data in weather forecast is also 
rather small. It could be possible to download this amount of 
data to the edge device with a rather slow internet connection. 
Edge computing could also help significantly in possible 
connection shortages. Local weather station data could be 
connected directly to the control device without available 
internet connection. 
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Abstract. Edge computing is currently one of the main research topics in the 
field of Internet of Things. Edge computing requires lightweight and computa-
tionally simple algorithms for sensor data analytics. Sensing edge devices are 
often battery powered and have a wireless connection. In designing edge devic-
es the energy efficiency needs to be taken into account. Pre-processing the data 
locally in the edge device reduces the amount of data and thus decreases the en-
ergy consumption of  wireless data transmission. Sensor data compression algo-
rithms presented in this paper are mainly based on data linearity. Microclimate 
data is near linear in short time window and thus simple linear approximation 
based compression algorithms can achieve rather good compression ratios with 
low computational complexity. Using these kind of simple compression algo-
rithms can significantly improve the battery and thus the edge device lifetime. 
In this paper linear approximation based compression algorithms are tested to 
compress microclimate data.  

Keywords: Edge Computing, Internet of Things, Compression algorithm. 

1 Introduction 

Edge computing has been one of the most significant research topics in the field of 
Internet of Things during these years. The edge computing means that part of the data 
analysis is carried out in so-called edge devices. The edge devices are devices located 
on the edge of the network. Wireless sensor nodes are one example of typical edge 
devices. The edge devices are often computationally constrained and light devices [1]. 

Edge computing is not going to substitute the cloud computing but it is more like a 
supplement concept in the IoT field. Most of the data analysis has been carried out in 
the cloud and this will be probably the case in the future as well. As the amount of the 
data from the sensing devices is increasing all the time and these sensing devices are 
often battery or energy harvesting powered, the energy efficiency of those so called 
edge devices has become very important. It is known that transmitting data wirelessly 
from the edge device is the most energy-consuming task in these devices. It is more 
energy efficient to conduct some light data analysis or pre-processing locally and thus 



reduce the amount of data needed to send to the cloud. One possible pre-processing 
task for the sensor data is to filter clearly erroneous data and to compress the sensor 
data. The edge computing approach can also help to solve privacy and security issues 
concerning IoT data and offer minimized latency and improve the quality of service 
(QoS) [2]. 

There are different sensor data compression methods available. The suitability and 
efficiency of different methods depend on the data characteristics. Different methods 
differ in computational complexity, which is an important aspect in edge computing. 
This paper presents basic and light compression algorithms based on data linearity. 
Many environmental values are near linear in small time window. These compression 
algorithms’ compression efficiency is tested for microclimate datasets. Datasets are 
temperature, air pressure and wind speed measurements from the Finnish Meteorolog-
ical Institute’s open data service. 

The microclimate data is often nearly linear in short time window. For example, 
temperature normally changes slowly and if the measurement sampling rate is fast 
enough, the consecutive measurements cannot deviate much from each other [3]. Air 
pressure  normally also changes slowly. Only approaching low pressure such as a 
thunderstorm, the air pressure can drop quickly [4]. Wind speed is slightly different 
because it can stay zero rather long periods. The wind speed also varies quite quickly 
and it is also quite abrupt in nature [3]. In this paper, the wind speed dataset is aver-
aged data and thus represents more linear type data. 

The microclimate data is very important for example in different agricultural appli-
cations. Agricultural applications for example for crop protection and to maximize 
crop production [5, 6] have been presented; however, microclimate measurements are 
important also in urban environment [7]. 

2 Lightweight Compression Methods for Sensor Data 

In constrained edge devices, it is crucial to optimize resource usage. This means to 
optimize computational capacity, energy consumption and bandwidth usage [8]. 
These devices are often connected to the internet via wireless connection. Wireless 
transmitting is known to be the most energy-consuming task in these devices, thus it 
is in many cases more energy efficient to carry out data pre-processing and light-
weight data analytics locally and thus reduce the amount of data needed to send via 
wireless link. A very simple method for reducing the amount of data is to compress 
the data. The other method is simply to reduce the sampling frequency of the sensor 
[3]. The drawback here is that information is lost between sampling points. Sampling 
a sensor is quite low energy operation compared to the energy consumption in radio 
transmission [3]. By using an effective and low computational complexity compres-
sion algorithm it is possible to keep radio transmitting rate low and thus keep the en-
ergy consumption on a low level, yet at the same time keep the accuracy of the higher 
sampling rate. 

Typically, a simple edge device is a sensor node measuring some environmental 
magnitudes. Typical environmental magnitudes are for example temperature, humidi-



ty, air pressure and lightness. The measured values are then sent to the cloud and in 
the cloud, the data is combined with other data (for example open data) and together 
used for decision processing. 

2.1 Lossy Methods and Lossless Methods 

Sensor data compression methods are divided in lossy and lossless methods. Many 
different algorithms are presented for sensor data compression [9, 10]. The suitability 
of the compression algorithm is dependent on the sensor data characteristics. For ex-
ample, many environmental magnitudes are nearly linear in short time scale, and thus 
some compression algorithms are more suitable for this kind of data. Some other type 
of data may require different types of compression algorithms. 

If the reconstruction error accepted is more than zero, it is possible to use lossy 
compression algorithm. Compression ratio is dependent on accepted reconstruction 
error. Thus, the lossy compression algorithm will lead to loss of the information [11]. 
The advantages of lossy compression algorithms are the effective reduction of the 
data and in many cases, the computational simplicity. The compression and reduction 
of the data is done by eliminating some of the original information [11]. The accepted 
level of reconstruction error is very application dependent. In general, the lossy com-
pression algorithms have higher a compression ratio together with lower computa-
tional complexity than lossless algorithms [12].  

Many lossy algorithms have some latency and thus are not suitable for real-time 
applications. There are also lossy zero-latency compression algorithms. These com-
pression methods are based on predictive filters (e.g. Kalman filter), which predict the 
data values from previous samples. In this method, the same filter is used in both 
sides of the network (sensor node and the user node where the data is analyzed fur-
ther), thus the same estimation is used in both sides, and the new data is sent only if 
the value differs from the predicted value more than the tolerance level [8]. 

Lossless algorithms are able to reconstruct the original data without an error. The 
lossless methods perform two steps: the statistical model is first generated and then 
the second step uses this statistical model to map the input data to the bit sequences. 
In these bit sequences, the frequently occurred data generates a shorter output than 
infrequently occurred data. The two main encoding algorithms used are Huffman 
coding and arithmetic coding. The Huffman coding is computationally simpler and 
faster; however, it gives poor results in compression. Arithmetic coding is more effi-
cient in compression but more complex. In many cases, the lossless algorithms are not 
suitable because the compression ratio is poor and computational complexity is higher 
than in lossy algorithms [13]. 

2.2 Lossy Compression Algorithms Based on Linear Approximation 

Lossy data compression algorithms analyzed in this paper are based mainly on piece-
wise linear approximation. Piecewise linear approximation based compression algo-
rithms are based on the fact that many environmental phenomena are near linear in 



short time window [3]. These kinds of phenomena are for example temperature, hu-
midity, air pressure and wind speed. 

A simple linear compression model is based on a regression line, which is calculat-
ed on the minimum of the first three measured values [13]. Least-squares regression 
line is used to approximation of discrete data [14]. In the least-squares regression line, 
the linear model is set to fit a set of data points. The least-squares method minimizes 
the sum of squares of the deviation between the data points and the fitting line thus 
gives a best fit to the data points. This is called a linear regression. A linear function y 
= ax + b has two free parameters, a and b [14]. The general sum of squares of the 
deviation is [14]: 

 𝑆𝑆 =  ∑ [𝑦𝑦𝑘𝑘 − (𝑎𝑎𝑥𝑥𝑘𝑘 + 𝑏𝑏)]2𝑁𝑁
𝑘𝑘=1  (1) 

Minimizing this equation and solving for a and b give [14]: 
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The parameters a and b give the best line fit to the N data points. To use these formu-
las it is needed to sum xk, xk

2, yk, xkyk, and square the sum of xk [14]. If the regression 
line is calculated from the first three measurements, then N is 3. 

If the data is nearly linear, this regression line gives the prediction for the follow-
ing measured data points with a certain error bound e. When the measured data point 
falls out of the error bound ±e, then the new regression line is calculated. Hence, the 
data will be presented in piecewise linear segments. 

There are several different versions of this kind of algorithm presented in literature. 
The algorithm is named here as Linear Regression based Temporal Compression 
(LRbTC). The algorithm is as follows: 

1. Get the next three measured values and calculate the regression line to fit those 
three values. 

2. Store (send) regression line point at time moment of the first measured value used 
to calculate regression line. 

3. Get next measured value and compare it to the regression line. 
4. If the difference is under the error bound e, then go to 3. Else, continue onto the 

next step. 
5. Store (send) the regression line point when the measured value was last time under 

the error bound and go to 1. 

Fig. 1 shows an example of this linear regression based compression for sensor data. 
Original temperature data is marked in blue circle. The regression line is calculated 
from the first three measured values (20, 20.3 and 20.1). Then following measured 
values are compared to the regression line value on that time moment. Regression line 
continues until the difference between measured value and regression line exceed the 



error bound e, which is in this example set to 0.5. Regression line is the green line in 
Fig. 1. At time moment 11 the difference between regression line and measured value 
exceeds 0.5, thus the first regression line is set to end at time moment 10. From time 1 
to 10, the compressed data includes only the starting point of the regression line and 
the end point of that line. The next regression line is calculated from the measured 
values in time moments 11 to 13. At time moment 15, the difference exceeds the error 
bound and thus the new line is calculated from the values at time moments 15-17. In 
20, the difference exceeds again the error bound. The first 19 measured values (time 
moments 1 to 19) are compressed to 6 values (three regression lines). 

 
Fig. 1. Linear Regression based Temporal Compression (LRbTC) algorithm example. 

In the example in Fig. 1, the error bound was set to 0.5. Thus, the measured value and 
regression line value should not exceed 0.5. This can anyway happen in time mo-
ments that are used to calculate the regression line. 

The modified version of the LRbTC (M-LRbTC) algorithm corrects the problem if 
the difference between regression line and the data values used to calculate this re-
gression line exceed the error bound e. The modified version of the algorithm is as 
follows: 

1. Get the next three measured values and calculate the regression line to fit those 
three values. 

2. Compare the regression line and three values used to calculate the line.  
3. If the difference is greater than error bound e, then store (send) the first two data 

points and get the next two measurement values and calculate new regression line 
and go to 2, else continue onto the next step. 

4. Get the next measured value and compare it to the regression line. 
5. If the difference is under the error bound e, then go to 4. Else, continue onto the 

next step. 
6. Store (send) the last regression line point when the measured value was under the 

error bound and go to 1. 

Lightweight temporal compression (LTC) was introduced in [3]. It is simple and very 
efficient compression algorithm for microclimate type data in a small enough time 



window. LTC’s effectivity to compress data depends on the data characteristics. For 
linear type environmental data, it can obtain up to 20-to-1 compression ratio [3]. 
Compression ratio is also dependent on error bound used. It is recommended to use 
the sensor manufacturer’s specified accuracy value as the error bound in LTC algo-
rithm [3]. For example if the sensor used is a temperature sensor with 0.5 degrees 
accuracy, it is reasonable to use 0.5 as the error bound. 

The LTC algorithm is explained in detail in [3, 11, 15, 16] and a modified version 
in [17]. The linear model starts with the first data value as a starting point. The lower 
line and upper line (limit lines) are drawn from the starting point to the next measured 
value ±e as seen in Fig. 2 a. The limit lines are tightened from the following values 
when error bound extreme or extremes are inside the previous limit lines as in Fig. 2 
b. and c. The measured data is discarded from the linear model if the measurement 
cannot fit inside upper line and lower line determined by the previous data with the 
error bound ±e. Then the new linear model starts using as a starting point the middle 
point of the upper line and lower line in last time moment included in the linear seg-
ment. This procedure of the algorithm can be seen in Fig. 2 d. 

a)                b) 

c)                d) 

Fig. 2. Lightweight temporal compression (LTC) algorithm. 

The reconstruction error never exceeds the error bound e in the LTC algorithm. The 
LTC algorithm has low computational complexity and thus it is suitable for con-
strained edge devices such as sensor nodes [17]. In Fig. 3, the LTC is compared to 
previously presented linear regression based algorithm. 



 
Fig. 3. LTC compared to the basic linear regression based algorithms. 

The disadvantage of the LTC is that it is not well suited for real-time applications [8] 
and its suitability in general is very application dependent. LTC uses linear interpola-
tion to represent the original signal, and the linear interpolation model is known only 
when the both extremes of the linear part is known. This introduces significant laten-
cy for the model [8]. The linear regression based algorithms presented previously 
suffer from the same problem.  

2.3 Transform Based Compression Methods 

Discrete Fourier Transform (DFT) is a well-known transform based algorithm. It is 
simple to use for compression by using the Fast Fourier Transform (FFT) algorithm 
[18]. The FFT algorithm expresses the time-series signal in frequency representation. 
By removing the coefficients with less energy, it is possible to reduce the amount of 
data and still keep the information to rebuild the time series data with reasonable re-
construction error. When the FFT is taken over a window of N samples and the first 
sample and last sample differ a lot, the information of discontinuity is spread across 
the frequency spectrum. To prevent this discontinuity it is possible to overlap the 
windows [18]. 

Another well-known transform based algorithm is Discrete Cosine Transform 
(DCT) and Modified Discrete Cosine Transform (MDCT) [12, 18, 19]. It has several 
advantages compared to FFT algorithm [18]. The DCT coefficients are real numbers; 
thus there is no need to deal with complex numbers. This saves memory and is less 
complex. The DCT also has the information concentrated to the few low-frequency 
components and the DCT does not suffer the edge discontinuity problem like FFT. 
The DCT is a well known and widely used compression algorithm for example in 
image compression and for time series type sensor data. 



3 Testing the Algorithms with Real Microclimate Data 

The linear approximation based compression algorithms are tested for microclimate 
type data and compared to the DCT algorithm. The datasets tested here are gathered 
from the Finnish Meteorological Institute’s open data service [20]. Finnish Meteoro-
logical Institute has about 400 observation stations in Finland. Not all the stations 
have the same measured variables. For this research, Salla Naruska station’s data 
from year 2018 in 10 minutes time sampling rate was chosen. The variables chosen 
were temperature, air pressure and wind speed. Salla Naruska measurement station is 
located in eastern Lapland and known as one of the coldest places in Europe. The 
exact situation of the station is: latitude 67.16226, longitude 29.17766 in decimal 
degrees. The temperature is in Celsius degrees (ºC), air pressure in hectopascals (hPa) 
and wind speed in meters per second (m/s). Th wind speed is measured in 10 minutes 
average. All variables are measured with one decimal resolution. 

One year measurements in 10 minutes time interval mean 51,961 measurements for 
each variable. Some data was missing; however, the missing points were linearly 
interpolated. In air pressure data in total 102 points were missing, in temperature data 
101 points were missing and in wind speed data 1,077 points were missing. For com-
parison, also the same data in one-hour measurement interval was used. This one-hour 
interval data for the whole year 2018 includes 8,761 measurements points for each 
magnitude. The missing values were also linearly interpolated. 

The compression algorithms chosen were simple linear regression based approxi-
mation algorithm (LRbTC), modified linear regression based algorithms (M-LRbTC) 
and lightweight temporal compression (LTC). Basic discrete cosine transform (DCT) 
was used for comparison. 

The algorithms were tested with MATLAB simulation. LRbTC, M-LRbTC and 
LTC algorithms were programmed in MATLAB by using mainly functions polyfit 
and polyval. Polyfit function was used for linear regression in LRbTC, and M-LRbTC 
and to create upper and lower lines in LTC instead of equations 2 and 3 [21].  

Discrete cosine transform (DCT) was tested by using the MATLAB built-in func-
tion dct. In this example, the DCT was used with window of five measured values to 
calculate DCT. It was then tested with different threshold values to cancel the small-
est coefficient values. After rebuilding the signal, the maximum difference (variation) 
from the original values was calculated. 

Algorithms were compared to each other by compression ratio versus reconstruc-
tion error. The compression ratio (CR) was calculated by: 

𝐶𝐶𝐶𝐶 =  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑜𝑜
𝑐𝑐𝑜𝑜𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑𝑜𝑜𝑑𝑑𝑜𝑜

 (5) 

Thus, the bigger the CR value is, the more efficient the compression algorithm is. The 
CR varies significantly according the error bound e used. 

Temperature data was tested first. In the total 51,961 measured values the highest 
temperature was +30.4 ºC and the lowest temperature -33.8 ºC. With 10-minute 
measurement interval, the temperature data is mostly near linear; however, in some 
extremes the temperature changes quite a lot between consecutive measurements.  



LRbTC algorithm showed very big reconstruction errors for tested temperature da-
ta, which is because when measuring the regression line, the values used to calculate 
may differ from the regression line more than the error bound e used. The data used is 
with 10-minute interval and in extremes, the values may differ significantly from 
measurement moment to the next moment. Higher measurement sampling rate would 
help the situation.  

The modified version of the basic linear regression based algorithm (M-LRbTC) 
works as it is intended. It was tested with different quantity of measurement values to 
calculate the regression line. In Fig. 4, the red line is used with three values to calcu-
late the regression line; cyan line is with four values and magenta with five values. 

Fig. 4 illustrates the results for M-LRbTC, LTC and DCT algorithms for tempera-
ture data. With typical error bound e = 0.5 ºC, the M-LRbTC algorithm can achieve 
3.9-4.8 compression ratio. LTC is significantly more effective with CR = 9.5. DCT 
was tested with five values time window to calculate DCT. DCT compression ratio is 
significantly lower compared to the other tested algorithms. DCT suffers from the 
small window used and it can achieve higher compression ratios with bigger window 
used. Small time window was chosen to be more realistic for sensor data stream. 

 
Fig. 4. Linear approximation based compression algorithms and DCT for temperature data. 

Fig. 5 shows the results for the air pressure data. Air pressure values varied between 
976.4 hPa – 1056.4 hPa. The variation is nearly linear in short time window, however, 
the data includes few clear errors. Three times the air pressure value changes from 
measurement to the next more than it is normally possible. The biggest difference in 
consecutive measurements is 12.7 hPa (in 10 minutes), which is clearly an error. 
Normally the air pressure can change up to 5 hPa/hour and only in some very quickly 
progressing low pressure it can be more than 5 hPa/hour [4]. The quick changes in air 
pressure data can be due to clear measurement error or for example due to sensor 
calibration. The results for the air pressure data are similar to the temperature data, 
except the compression ratios are much higher. This indicates that the air pressure 
data is behaving very linearly with the 10-minute measurement interval. The LTC 
algorithm can achieve high compression ratios. 



 
Fig. 5. Linear approximation based compression algorithms and DCT for air pressure data. 

In Fig. 6 are the results of the wind speed measurements. Wind speed is measured in 
10-minute average values. Wind speed is a different characteristic compared to the 
temperature and air pressure data. Wind speed can remain quite a long period in 0 
m/s. Wind speed can also change quickly and quite significantly; however, here the 
10-minute average measurement averages the results significantly. The compression 
ratios for wind speed data are on the same level as for the temperature data. 

 
Fig. 6. Linear approximation based compression algorithms and DCT for wind speed data. 

In every comparison, it can be seen that LTC is the most effective compression meth-
od. M-LRbTC also works well and it is a very simple algorithm and easy to apply. 
Table 1 illustrates a comparison of the compression algorithms between two different 
datasets with error bound e set to 0.5 for each quantity. The datasets are the same 10-
minute interval sets as used previously and also with 1 hour measurement interval. It 
can be seen in table 1 that all compression algorithms are significantly more effective 
for 10-minute sampling rate data. This is because with 10-minute sampling rate, the 
data behaves more linearly.  



Table 1. Comparison of the compression ratios for 10 min and 1 hour interval datasets. 

Compression  
algorithm 

Temperature (e = 0.5 °C)  Air pressure (e = 0.5 
hPa) 

Wind speed 
(e = 0.5 m/s) 

10 min 1 hour 10 min 1 hour 10 min 1 hour 
M-LRbTC, 3 values 3.9 1.85 8.94 3.05 2.62 1.88 
M-LRbTC, 4 values 4.46 1.95 9.94 3.45 3.01 2.04 
M-LRbTC, 5 values 4.78 1.86 10.75 3.79 3.18 1.97 
LTC 9.49 3.19 28.22 8.28 5.09 3.03 
DCT 3.07 1.75 4.63 2.72 2.6 1.8 
 
The disadvantage in these linear approximation based algorithms is the latency. These 
methods are not directly suitable for real-time applications. LRbTC based methods 
are possible to modify to work better for almost real-time operations: After calculat-
ing the new regression line, the first point of the line and line coefficients can be sent. 
The receiver can use that information until the new point and line are received. Thus, 
the latency is in maximum when the new regression line is calculated, and it depends 
on how many point data is used for calculating the regression line. 

4 Conclusions and Future Work 

Compression algorithms were tested with some real measurement data. In this case, 
the environmental microclimate data such as temperature, air pressure and wind speed 
were used. Many environmental quantities are near linear in nature at least if the ob-
servation window is short. Linear approximation based compression algorithms bene-
fit from this environmental data behavior. In this research, it was shown that these 
simple compression algorithms are rather efficient for this kind of data. The perfor-
mance of compression algorithms for compression compared to reconstruction error 
was the main property to compare. The next step will be to test these algorithms in 
edge devices and to take into account the computational complexity of the algorithms. 
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Abstract. Measuring some environmental magnitudes is a very typical 
application in the field of Internet of Things. Wireless sensor nodes measuring 
these environmental magnitudes are often battery powered devices. Thus, the 
energy efficiency is an important topic in these measuring devices. The most 
efficient method to reduce energy consumption in wireless devices is to reduce 
the amount of data needed to transmit via wireless connection. A simple 
method to reduce the amount of the data is to compress sensor data. 
Environmental data behaves quasi linearly in short time window and many 
compression algorithms utilize this data behavior. In this paper the different 
environmental data sets characteristics and their effect on compression 
algorithms’ compression ratio are evaluated. The results can be used to evaluate 
and choose the suitable compression algorithm for the application and to predict 
the lifetime of the battery powered device.  

1   Introduction 

In the field of Internet of Things (IoT), sensors measuring some environmental 
magnitudes are very typical applications. The IoT applications measuring and 
utilizing some environmental data can be found and used in many sectors in the 
society. The need to measure some environmental magnitudes is especially typical in 
agricultural applications [1]. In agricultural applications, the devices are often spread 
across the field and thus the resources available are often limited, e.g. reliable power 
supply and good quality wireless connections, which often also means limited 
computational power. 

In agriculture, the Internet of Things applications can be used for e.g. crop 
management, crop protection, soil monitoring and water management. [2, 3] Many 
IoT applications and solutions in the field of agriculture are still in their infancy; 
however, the field is changing very fast [4]. 

Energy efficiency and energy saving are very important aspects in battery powered 
wireless sensor nodes [5, 6]. One very efficient way to reduce energy consumption in 
wireless sensor nodes is to compress the sensor data. By compressing the sensor data, 
it is possible to reduce the amount of data needed to transmit via a wireless 



connection. Wireless connection is known to be the most energy consuming operation 
in the wireless sensor node. [7] 

Compressing the amount of actual sensor data needed to transmit wirelessly is only 
one way to reduce energy consumption. [6] However, due to the simplicity of many 
compression methods presented, it is a very easy and powerful method for 
maximizing the lifetime of a battery powered device. 

In this paper, several data linearity-based compression methods have been 
evaluated and compared to each other. The efficiency of the compression methods to 
compress certain environmental data sets are evaluated and the effect of the data sets’ 
characteristics in the compression ratio achieved have been evaluated. The correlation 
of certain data sets’ characteristics to the compression ratio has been evaluated. With 
the correlation found, it is possible to choose the suitable compression method for a 
certain application. 

2   Compression Methods Based on Time Series Data Linearity 

Various sensor data compression methods have already been introduced several 
decades ago. After the proliferation of the wireless sensor networks (WSN) and the 
Internet of Things (IoT), the topic of sensor data compression has received a great 
deal of new attention in the field of research. [8] Typical sensor data sets are for 
example some environmental variable data sets such as temperature, humidity, air 
pressure and wind speed. Additionally, different Wireless Body Sensors measuring 
some parameters or behavior of the human body have gained much attention [9]. 
They are used in different wearable and wellness devices and applications. 

There are various types of compression methods presented in research papers. 
There are time domain and transform domain methods. Well-known transform 
domain methods are for example Wavelets, Chebyshev Transform, Discrete Fourier 
Transform (DFT) and Discrete Cosine Transform (DCT). Many times the domain 
methods are based on data linearity. Linearity based methods are for example 
Piecewise Linear Approximation (PLA), Lightweight Temporal Compression (LTC), 
Piecewise Aggregate Approximation (PAA) and Piecewise Constant Approximation 
(PCA). These methods are lossy compression methods. [6, 10-12] 

Transform domain methods are not well suited for constrained wireless sensor 
nodes due to their computational complexity and limited memory. [10] Many 
compression methods such as LTC also suffer from latency and are not well suited for 
real-time or near real-time applications [13]. DFT and DCT also suffer latency 
dependent on the window size N used. 

Even though linear approximation and data linearity-based methods are well 
known and simple methods, there is recent and ongoing research on the topic. Several 
different variations of these methods have been introduced during recent years. [7, 11, 
14, 15] 

The LTC is very efficient compression method for environmental data with a linear 
nature at least in short time window. Its compression ratio can be quite high. For 
temperature data with 10 minutes measuring rate and error bound ε = 0.5 °C, the LTC 
algorithm can achieve a compression ratio 10 to 1. The compression ratio is very 



dependent on the data set characteristics and the error bound used. [11] At the same 
time, it is rather a simple compression algorithm and thus it can be used in 
constrained IoT devices with limited memory and processing power. 

3   Effect of Environmental Data Set on Compression Ratio 

Many environmental magnitudes behave near linearly if the observation window is 
short enough. [16] For example, if the environment microclimate temperature is 
rising, it can be predicted that it will continue rising at least in the near future. This 
linear behavior can be used to compress the amount of data needed to transmit from 
the sensor node. Simple sensor data compression methods utilizing this behavior are 
based on data linearity. Perhaps the simplest compression algorithm for this kind of 
data is to use linear regression of n (n ≥ 3) measured values and with allowing certain 
error bound ±ε to the calculated regression line. The calculated regression line with 
error bound can be used to predict the following values. There are many different 
versions of linearity-based compression methods presented in the literature. [11, 16, 
17] This kind of methods are lossy methods. 

Environmental data has a linear behavior if the observation window is short. The 
more constant the measured magnitude remains, the more efficiently these data 
linearity-based compression algorithms compress the data. [12] However, the 
environmental magnitudes do not remain constant; instead, the values are mostly 
changing. There is natural variation in the values of environmental magnitudes in 
function of time but with allowing some random variation in values, the main trend is 
often rather stable for some time period. Many compression methods utilize this 
behavior. 

3.1   Data Set Characteristics Evaluated  

In this paper, the efficiency of different linearity-based time series compression 
algorithms to compress environmental data is tested for different environmental data 
sets. Data sets’ characteristics are evaluated, and the parameters affecting the 
compression ratio have been evaluated. 

 
The tested and evaluated data set parameters are: 

• AC, the average absolute change between consecutive measurements in 
the whole data set 

• SD, the standard deviation of the change between consecutive 
measurements in the whole data set 

 
For the measured values xi: i  [1, n], the average change (AC) between 

consecutive measurements is calculated with the equation (1): 
  
 

(1) 



Standard deviation (SD) is calculated from the consecutive measurement change 
values with the equation (2): 

 
 

(2) 
 

 
where, 
 
 

(3) 
 

3.2   Data Sets  

The used data sets were gathered from the Finnish Meteorological Institute’s (FMI) 
open data service [18]. The data sets gathered from FMI service were Naruska 
measurement station data from whole year 2018. The Naruska measurement station is 
located in Eastern Lapland in Finland. It is one of the official measurement stations in 
Finland. Temperature, air pressure and wind speed data with a 10-minute 
measurement interval were used. The data sets were divided into monthly data sets, 
and the whole year data set was also used. 20-minute, 30-minute, 40-minute, 50-
minute and 1-hour measurement interval data sets were derived from the original 10-
minute measurement interval data set by cancelling the values from the original data 
set. 

Thus, there were in total 78 data sets for each environmental variable (temperature, 
air pressure and wind speed). 

The whole year 2018 data set with a 10-minute measurement interval was the 
largest data set with 51 961 measured values for each variable. The smallest data set 
used was February 2018 with 1-hour measurement interval with 672 measured values 
for each variable. 

The average change AC values and standard deviation SD values were compared to 
the compression ratios achieved with different time series compression algorithms. 
The compression ratios were calculated with the equation (4): 

 
 

(4) 
 

 
where the original data is the amount of values in original data set and the 

compressed data is the amount of values in a compressed data set. 



4   Compression Algorithms’ Compression Ratio Compared to 
the Characteristics of Selected Data Set  

Compression algorithms tested and evaluated were Lightweight Temporal 
Compression (LTC) [16] and Linear Regression based Temporal Compression 
(LRbTC) [11]. The LTC algorithm is originally presented in reference [16]. LTC uses 
the piecewise linear function to estimate data points. LTC calculates the upper and 
lower bound from every new data point by using the selected error bound. The LTC 
algorithm is explained in detail in references [7, 11, 16]. LRbTC algorithm uses the n 
measured values to calculate the regression line which can be used to predict 
following values with allowing a certain error bound ±ε from the line. When the 
measured value falls out from the allowed area, the new regression line is calculated 
which predicts the future values. [11] LRbTC algorithms were tested with 3, 4 and 5 
values used to calculate the linear regression line. The error bound used was 0.5 ºC 
for temperature data sets, 0.5 hPa for air pressure data sets and 0.5 m/s for wind speed 
data sets. The compression ratios achieved were compared to the data sets’ 
characteristics SD and AC, which have been previously explained in this paper. The 
compression algorithms were programmed on Matlab as in reference [11]. The 
LRbTC algorithm used was the slightly modified version M-LRbTC [11], and the 
LTC algorithm used was the original version originally presented in the reference 
[16]. 

4.1   Temperature Data Sets  

For temperature data sets (78 data sets in total) the results can be seen in Fig. 1. Fig. 1 
presents the compression ratio for each temperature data set with LTC and LRbTC 
algorithms. Discrete Cosine Transform (DCT) algorithm with window size of 5 
values was used just for comparison. The results are presented in the function of the 
standard deviation (SD) of the data set’s consecutive measurements change (on the 
left) and in the function of average change (AC), as previously explained in this paper. 
The trend line (solid line) is visually the best fit polynomial regression line of the data 
points presented. 

Fig. 1 clearly indicates that the LTC is the most effective compression algorithm 
compared to the others. The similar results have been achieved in reference [11]. The 
highest compression ratio (19.24) has been achieved with LTC algorithm from 
December 2018 data set with a 10-minute measurement interval. The highest 
compression ratio with LRbTC is 8.21 from the same data set. LRbTC with 3 values 
used to calculate regression line is slightly worse than the versions with 4 and 5 
values used to calculate the regression line. The difference between 4 and 5 values 
used to calculate regression line is almost negligible. 

The correlation between the compression ratio and the standard deviation of the 
consecutive measurements change is clear; however, the correlation is not linear. A 
small standard deviation means that the value changes are small from measurement to 
measurement, which means more constant and linearly behavior data. When the SD 
value decreases from the value 1 to 0.2, the compression ratio raises strongly. 



In Fig. 1 on the right side, the same data sets’ compression ratios were compared to 
the average change (AC) in the absolute value of the consecutive measurements’ 
change as explained previously in this paper. Similar results can be seen with the AC 
as with the SD. The correlation is similar as in SD comparison except the dispersion is 
smaller in AC comparison. Thus, it seems that the AC predicts the compression ratio 
achieved better than the SD. 
 

 
 
 
 
 
 
 
 

Fig. 1. Compression ratio in function of SD (on the left) and AC (on the right) from the 
temperature data sets. 

The trend lines (fitting lines) in Fig. 1 are 8th degree polynomials (y = p1*x^8 + 
p2*x^7 + p3*x^6 + p4*x^5 + p5*x^4 + p6*x^3 + p7*x^2 + p8*x + p9). The 8th 
degree polynomials were chosen here because they give visually the best fit for the 
data. Additionally, the norm of residuals value, which is the measure of the goodness 
of the fit, was best or almost the best of the basic fitting functions. The smaller the 
norm of residuals value is, the better the fit. The polynomial coefficients and norm of 
residuals values for each compression algorithm in function of SD and AC can be seen 
in Table 1 and Table 2. 

Table 1.  Correlation between the compression ratio and standard deviation for temperature 
data sets, polynomial coefficients and the norm of residuals values. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 6.7423 6.2854 6.8386 6.548 
p2 -72.267 -67.776 -70.398 -80.376 
p3 325.72 307.75 306.91 406.94 
p4 -805.25 -767.62 -739.53 -1118.2 
p5 
p6 
p7 
p8 
p9 

1192.3 
-1081.4 
587.81 
-178.12 
26.555 

1148.7 
-1055.3 
583.09 
-180.98 
28.115 

1076.8 
-971.24 
533.42 
-167.79 
27.281 

1831.5 
-1837.2 
1109.9 
-378.84 
63.733 

Norm of 
residuals 

2.4946 2.5065 2.5082 7.0922 



 

Table 2.  Correlation between the compression ratio and average change for temperature data 
sets, polynomial coefficients and the norm of residuals values. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 177.09 181.2 141.07 35.377 
p2 -1166.5 -1174.1 -896.79 -331.22 
p3 3232.7 3207.3 2407.7 1253.5 
p4 -4906.3 -4813.2 -3566.6 -2552 
p5 
p6 
p7 
p8 
p9 

4447.9 
-2465.2 
821.88 
-156.24 
16.452 

4335.5 
-2405 
811.44 
-158.91 
17.68 

3197.7 
-1791.4 
625.16 
-131.74 
16.636 

3089 
-2295 
1036 
-270.25 
37.549 

Norm of 
residuals 

1.4334 1.3387 1.4053 3.9424 

 
The norm of residuals values demonstrate that the correlation between compression 

ratio and AC is better than with SD. 
If the data values are varied a great deal from measurement to measurement, it 

means faster changes in data in function of time. This indicates that this kind of data 
have higher frequencies. The frequency spectrum of the data set can be calculated 
with Discrete Fourier Transform (DFT). The data set DFT was calculated in Matlab 
with FFT (Fast Fourier Transform) function. The comparison of the frequency 
spectrum of two very different temperature data sets can be seen in Fig. 2. The red 
line is FFT from data set: Naruska July 2018 with a 1-hour interval. It has the 
standard deviation SD = 2.021 and average change AC = 1.437. The compression 
ratio with LTC is 2.439. The blue line is the FFT from data set: Naruska December 
2018 with a 10-minute interval. It has the SD = 0.235 and AC = 0.106. The 
compression ratio with LTC algorithm is 19.241. Data sets have been normalized as 
both have been sampled with the same sampling rate. The frequency spectrums 
indicate that December 2018 with the 10-minutes measurement interval behaves more 
linearly because it has lower energy in high frequencies. The higher levels in high 
frequencies in July 2018 data indicate quick changes from measurement to 
measurement. Both data sets can be seen in function of time in Fig. 3. 

In summertime, the temperature is changing on a daily basis approximately 15-20 
degrees according to July 2018 measurement as can be seen in Fig. 3 on the left. With 
1-hour measurement interval that means a significant change in value between two 
consecutive measurements. In wintertime, the change is not that big daily and there 
are long periods when the temperature remains quite constant as can be seen from 
December 2018 data (Fig. 3 on the right side) and specially when the measurement 
interval is short like 10 minutes in this example, then the data behaves quite linearly 
and remains during many consecutive measurements quite constant. Standard 
deviation and average change values indicate this. 

 



 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The frequency spectrum of two temperature data sets. 

 
 
 
 
 
 
 

 

Fig. 3. The data sets with the highest AC and lowest AC. 

The results presented here can be used to evaluate the suitability of these 
compression algorithms to compress certain data sets if the data characteristics are 
known. The choice between three different versions of the LRbTC can be made by 
evaluating the compression efficiency and computational complexity. In real 
measurement applications the future data set’s characteristics are not known but the 
history data can be used to predict the probable data behavior and thus to choose the 
suitable algorithm. 

4.2   Air Pressure Data Sets 

The similar observations as for temperature data sets were done for air pressure data. 
The results can be seen in Fig. 4 where the left side illustrates the compression ratios 
of different compression algorithms in function of the SD, as described in this paper. 

It can be seen in Fig. 4 on the left side that some data sets are dispersed slightly far 
from the other points. Those data sets are October 2018 data sets with all 
measurement intervals used. There is a clear error in the data because during October 
2018 in air pressure data there is two times over 10 hPa air pressure change in 10 
minutes. The air pressure change of more than 5 hPa/hour is rare and occurs only if 
there is an incoming thunderstorm [18]. Those two big sudden and atypical changes in 
air pressure rise the SD value relatively much; yet, it is not seen in AC value. For 
example, in October 2018 the air pressure data with 10-minute measurement interval 



have 4 064 measured values. Thus, those two big changes in measured values do not 
affect the AC value much. Thus, this behavior cannot be seen in Fig. 4 on the right 
side which is the compression ratio in function of AC. 

The trend lines in Fig. 4 are fitting lines which are in this case 4th degree 
polynomials (y = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5). The coefficients of fitting 
lines and the norm of residuals can be seen in Table 3 and Table 4. 

 
 
 
 
 
 
 
 

 
 

Fig. 4. Compression ratio in function of the SD (on the left side) and the AC (on the right side) 
for the air pressure data. 

Table 3.  Correlation between the compression ratio and standard deviation for air pressure 
data sets, polynomial coefficients and norm of residuals. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 168.35 148.3 215.54 620.34 
p2 -351.23 -316.4 -439.59 -1272.5 
p3 277.08 257.58 338.11 990.82 
p4 -99.784 -96.847 -119 -353.54 
p5 17.371 18.119 20.632 58.903 
Norm of 
residuals 

6.0527 7.6021 7.9608 23.117 

Table 4.  Correlation between the compression ratio and average change for air pressure data 
sets, polynomial coefficients and norm of residuals. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 743.39 555.94 961.93 2788 
p2 -1051.1 -837.53 -1332.6 -3821.2 
p3 561.64 482.03 694.26 1982.9 
p4 -139.09 -129.9 -167.6 -481.17 
p5 17.099 17.713 20.423 56.847 
Norm of 
residuals 

3.4408 4.2411 5.0525 18.369 

 
The correlation in general is similar as with temperature data sets. The correlation 

is not linear but the general behavior can be seen in Fig. 4. The compression ratios are 



much higher for air pressure data than for temperature data, which indicates that air 
pressure data is rather linear in behavior and it is changing slowly. The compression 
algorithms based on data linearity are rather effective for this kind of data. The error 
bound used was 0.5 hPa which can be rather high in some applications. If the error 
bound is smaller, then the compression ratio is smaller. 

4.3   Wind Speed Data Sets 

Wind speed data from the Finnish Meteorological Institute’s open data service is 
measured in a 10-minute average value [18]. In general, the wind speed has a slightly 
different behavior compared to the other environmental data. Wind speed can remain 
in 0 m/s for a while, and wind speed can also change quickly and there can be gusts. 
A 10-minute average measurement evens out the quick variation; however, the wind 
speed value remains in 0 m/s sometimes for long periods. 

The results can be seen in Fig. 5. The correlation is again quite clear, and it is not 
as non-linear as with temperature and air pressure data sets. 

 
 
 
 
 
 
 
 
 

Fig. 5. Compression ratio in function of the SD (on the left side) and the AC (on the right side) 
for wind speed data. 

The trend lines in Fig. 5 are 4th degree polynomials (y = p1*x^4 + p2*x^3 + 
p3*x^2 + p4*x + p5). The polynomial coefficients and the trend line norm of 
residuals can be seen in Table 5 and Table 6.  

Table 5.  Correlation between the compression ratio and standard deviation for wind speed 
data sets, polynomial coefficients and norm of residuals. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 11.793 22.697 43.109 127.38 
p2 -38.01 -61.805 -126.05 -352.64 
p3 47.695 67.138 141.3 372.1 
p4 -28.642 -36.706 -74.163 -181.75 
p5 8.804 10.612 17.597 38.372 
Norm of 
residuals 

0.82744 0.83827 0.92181 1.7419 

 



Table 6.  Correlation between the compression ratio and average change for wind speed data 
sets, polynomial coefficients and norm of residuals. 

Coefficients LRbTC, 3 values LRbTC, 4 values LRbTC, 5 values LTC 
p1 -13.996 23.544 113.51 274.47 
p2 2.7715 -54.641 -240.49 -561.96 
p3 21.602 54.168 196.51 443.05 
p4 -18.535 -27.962 -76.098 -164.2 
p5 6.2976 7.8401 13.9 27.494 
Norm of 
residuals 

0.55859 0.5111 0.63325 1.1643 

 

5   Conclusions 

According to the research presented in this paper, it is possible to predict the 
compression ratio for selected compression methods according to average change 
(AC) and standard deviation (SD) values of the data. The correlation is better between 
the compression ratio and AC than compression ratio and SD in every type of 
environmental data tested. This can be seen by comparing the norm of residuals value 
between AC and SD results. The AC value is also very easy to calculate from the 
history data. The history data can be used to predict the compression ratio with the 
selected compression method. The results can be used to choose a suitable 
compression method and with the estimated compression ratio it is possible to predict 
the battery powered wireless sensor node lifetime. 

The best correlation is with wind speed data sets and the worst with air pressure 
data set. At the same time, the compression methods selected and tested are most 
efficient for the air pressure data, and the least efficient for the wind speed data, 
whereas the temperature data is between these. 
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Abstract—The escalation of the Internet of Things applications 
has put on display the different sensor data processing methods. 
The sensor data compression is one of the fundamental methods to 
reduce the amount of data needed to transmit from the sensor 
node which is often battery powered and operates wirelessly. 
Reducing the amount of data in wireless transmission is an 
effective way to reduce overall energy consumption in wireless 
sensor nodes. The methods presented and tested are suitable for 
constrained sensor nodes with limited computational power and 
limited energy resources. The methods presented are compared 
with each other using compression ratio and inherent latency. 
Latency is an important parameter in on-line applications. The 
improved variation of the linear regression-based method called 
RT-LRbTC is tested and it has proved to be a potential method to 
be used in a wireless sensor node with a fixed and predictable 
latency. The compression efficiency of the compression algorithms 
is tested with real measurement data sets. 

Keywords—edge computing, internet of things, sensor data, 
compression algorithm 

I. INTRODUCTION 
Simple linearity-based compression methods are not a new 

research topic; however, they have gained a great amount of 
attention recently due to the growing interest in the Internet of 
Things and wireless sensor networks. That kind of compression 
methods have been available already for decades. Most of these 
methods are based on analyzing the data stream retrospectively 
when all or at least a significant amount of the data need to be 
already available [1]. Thus, these methods are not well suitable 
for compressing the data stream in real-time or even near real-
time. 

Applications using some sensor data in control could benefit 
from effective real-time compression methods based on data 
linearity; in particular if the measured magnitude were some 
environmental magnitude which behaves quite linearly in short 
time window. These kinds of rather slowly changing and thus 
linearly behaving magnitudes are for example temperature, air 
pressure, humidity and wind speed. These kinds of 
measurements are typical in agricultural applications and in 
many other different IoT applications [2]. 

Using some simple and computationally light compression 
method can be a very effective way to save in energy 
consumption and thus lengthen the lifetime of battery powered 
sensor nodes which often operate wirelessly [3]. 

II. LINEARITY BASED COMPRESSION ALGORITHMS AND 
THEIR SUITABILITY FOR REAL-TIME OPERATIONS 

As mentioned in the Introduction, many linearity-based 
compression methods analyzes the data retrospectively when the 
data is already available. It is easy to test and find the best 
possible compression algorithm if the data set is already 
available. This kind of approach is useful and suitable in 
Periodic Sensor Networks (PSN) [4]. In PSNs the node sends 
the data periodically to the sink [5]. This kind of measurement 
network does not work in real-time; however, the latency is 
known and can be adjusted by adjusting the sending period 
(frequency). There are many methods and protocols for PSNs to 
achieve longer battery lifetime by reducing the energy 
consumption with data aggregation and the amount of data 
needed to transmit wirelessly. Some methods are very simple 
based on constant approximation and some methods are slightly 
more complex [4]. Very simple methods suitable for constrained 
sensor nodes in PSNs are for example Piecewise Constant 
Approximation (PCA), Adaptive Piecewise Constant 
Approximation (APCA), Poor man’s compression and 
Piecewise Linear Histogram (PWLH) [6][7][8][9][10][11]. 
These methods are so called model-based methods [1]. 

PCA is a very simple on-line algorithm which divides the 
data stream to constant linear segments. It guarantees that the 
compressed data satisfies the error bound (maximum allowed 
deviation between original data and linear model) requirements 
compared to the original raw data [11]. PCA divides the data set 
in to fixed lengths linear segments called as windows. PCA 
method first takes the number of window size of sensor signals 
and calculates the difference between maximum value and  
minimum value. If the difference is smaller than the error bound 
accepted, then all the data points in that segment (window) are 
represented with a constant value which is the middle point of 
the maximum value and minimum value.  This is not the most 
effective method for compression, however, it is a very simple 



and computationally light method. It also has a fixed latency 
which is set by the window length [1][11]. 

APCA’s functionality is very close to PCA. It varies from 
PCA thus that constant value segments vary in length. The 
length of the constant value segment is as long as it still meets 
the demands of the error bound. As a result of APCA’s 
compression, there are constant segments of varying length. 
Each segment is represented by two values, the median value of 
the data points and the end time stamp of the segment [1][7]. If 
this model is applied to the sensor node, then the sensor node 
transmits two values after each segment to the sink (receiver). 
Because the segments vary in length, the latency is not known 
in advance, and the latency also varies depending on the length 
of the segments. The more stable the data values remain, the 
longer the segments are (higher compression ratio) which results 
in higher latency. 

PWLH has similarities to APCA but the linear segments 
need not have constant values. Thus, the linear segments can be 
represented with lines the slope of which can be other than zero 
[1]. This method suffers also from the unknown length of the 
linear segments, and thus the latency cannot be anticipated.  

These model-based methods are not well suited for the real-
time operations with tight requirements for the latency. The 
benefits in these model-based methods are that they are simple 
and computationally very light. Thus, these methods are well 
suited for the battery powered computationally constrained 
devices. 

There are also compression methods suitable to be used 
directly for the data stream. One very effective linearity-based 
compression method is called Lightweight Temporal 
Compression (LTC) [12]. It is a lossy method like all the other 
methods presented in this paper, and it is suitable to be 
implemented in constrained sensor node due to its 
computational simplicity. It is very effective and has a high 
compression ratio for the linearly behaving environmental data 
[2]. The significant drawback in this method is the latency; 
hence, it is not well suited for real-time applications [13]. The 
sensor node utilizing LTC algorithm sends the starting point of 
the linear segment to the receiver; however, the receiver does 
not know anything until the sensor node sends the end point of 
the linear section to the receiver. Between that there is no 
information available on the receiver side. The receiver does not 
know if the value is in average rising, staying at the same level 
or lowering, and after receiving the end point of the linear 
segment (which is at the same time the starting point of the next 
linear section), there is no information in which direction the 
values are changing after that. 

There are also various linear regression-based algorithms 
available and presented in the field of the research. One method 
is called Piecewise Linear Approximation (PLA). It uses the 
linear regression to model data stream with a certain error bound 
allowed from the linear segment. Each linear segment is 
represented by the start and end time stamps and the line 
parameters (base and slope) or by the linear segment starting 
point (time stamp and value) and end point (time stamp and 
value) [10]. If the data set or a part of it is already available, it is 
possible to find the best amount of values to be used to calculate 
a regression line which determines the longest linear segment 

which still meets the error bound requirement to the data. This 
kind of approach is not well suited for real-time operations. 

The linear regression can be calculated from the minimum 
of three data values; however, also more values can be used. 
This kind of approach is presented in [2] by the authors and the 
algorithm is called Linear Regression based Temporal 
Compression (LRbTC). In [2] 3, 4 and 5 values are used to 
calculate the regression line and have been tested to compress 
some environmental data (temperature, air pressure and wind 
speed). For near linearly behaving sensor data like temperature, 
there is a slight improvement in compression ratio if 4 or 5 
values have been used to calculate the regression line. The 
disadvantage in  LRbTC method is that the latency is not known 
in advance. The latency depends on how well the data is suited 
to the linear model. When the data behaves very linearly, it leads 
to a higher compression ratio but also higher latency at the same 
time. In this paper the authors present a modification for  LRbTC 
method towards more real-time operation with known and fixed 
latency. 

III. LINEAR REGRESSION BASED COMPRESSION ALGORITHMS 
TOWARDS REAL-TIME OPERATION 

LRbTC as presented in [2] is a very simple compression 
algorithm. In basic form it is presented as a flow chart in Fig. 1. 
This method is based on linear regression of the N measured 
samples and the line calculated predicts future values allowing 
a certain error bound ±  from the line. If the data is behaving 
linearly, the regression line gives quite a good prediction for the 
future values. 

Fig. 1. LRbTC algorithm. 

As mentioned, this kind of algorithm in this form does not 
present a constant latency. Step 5 in Fig. 1. happens when the 
value is out of the regression line more than an error bound. 
When that happens depends on the measured values and cannot 
be predicted.  

Model parameters: The raw data of sensor signal can be 
presented as S = ‹(v1,t1), (v2,t2),… (vn,tn)›, where vi ( ) is the 
measured value and ti is the time stamp (moment). From the 
compression algorithm the compressed data stream consists of 
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the starting points and the end points of the linear segments 
(ci, i), where ci is the compressed value (start or end point of the 
linear regression line) and i is the time stamp for that value. 
Thus, the output is LRbTC(S) = ‹(c1, 1), (c2, 2),… (cn, n)›. 

One weakness in this basic version of  LRbTC is in the first 
step where N values are used to calculate the regression line. The 
values used to calculate the new regression line can be more than 
an error bound away from the calculated line. In [2] the modified 
version M-LRbTC has been introduced, and its functionality can 
be seen in Fig. 2. 

Fig. 2. Modified LRbTC (M-LRbTC). 

In M-LRbTC version, after calculating the regression line, 
the distance of the values used to calculate the regression line 
are compared to the line. If the difference is bigger than the error 
bound, then the first two data points ‹(v1,t1),(v2,t2)› are stored 
and/or sent to the sink, and the next N values are used to 
calculate the new regression line. This version has the same 
limitations as the original version for the real-time operations 
due to unknown latency. 

One improvement for this kind of linear regression-based 
compression algorithm would be to send the regression line 
parameters (slope a and base b, as the line formula is c = at + b, 
where c is the value achieved from the linear model at the given 
time stamp t) with the starting point time stamp of the line to the 
sink (receiver). Thus, the latency would be the time of achieving 
N samples (N-1 sampling steps t), and the receiving part would 
know that the values follow the known line as long as the end 
point of the line is received. Thus, if the N is 3, then the latency 
is two times the measurement interval (2 x t) when the new 
regression line is calculated. The latency in the linear section 
(values following the regression line) is one measurement 
interval t. When the measurement value goes off the segment 

(more than error bound), then the last point of the line (which 
was one interval t before) is sent to the sink. This is a 
significant improvement compared to the most model-based 
piecewise approximation methods presented before and also 
compared to the LTC method. As a result from the compression 
the data is: ‹(a1,b1, 1),(c2, 2),(a3,b3, 3),(c4, 4),… (an-1,bn-1, n-1), 
(cn, n)›. 

A. Towards real-time operations with predicted and constant 
latency 
This LRbTC (M-LRbTC) method can be developed further 

to achieve an even shorter latency. When the measured value 
falls off from the allowed area (line with error bound), then the 
already measured values can be used to calculate the new 
regression line. Then the latency is only one measurement 
interval long ( t). Only at the beginning of the measurement, 
when the first regression line is calculated, the latency is N - 1 
intervals long. Simplified flow-chart of this kind of version is 
presented in Fig. 3. It is named here as Real-Time LRbTC (RT-
LRbTC). 

Fig. 3. Real-time LRbTC (RT-LRbTC). 

The raw data of sensor signal is S = ‹(v1,t1),(v2,t2),… (vn,tn)›. 
At the beginning of the algorithm the first N (N = 3, for example) 
value pairs are used to calculate the regression line. Thus, the 
values ‹(v1,t1),(v2,t2),(v3,t3)› are used to calculate the regression 
line (c1 = a1t + b1) parameters a1 and b1. Three values are sent 
to the sink (a1,b1, 1) at time moment t3 (plus the latency from the 
computational time), where 1 = t1. Thus, the algorithm latency 
at the beginning is t3 - t1 = 2 x t. After that, the algorithm 
compares the following measured values to the regression line 
at the time of the value (step 3 in Fig. 3). When the measured 
value falls out more than the error bound from the regression 
line, then the new regression line (a2,b2, 2) is calculated from the 
last N values and sent to the sink. 2 is the time stamp of the value 
which fell out from the linear section. The receiving side knows 
that the previous regression line ended one measurement 
interval before ( 2 – t), thus the latency from the algorithm 
itself is one measurement interval t. 

This basic version of RT-LRbTC has the same drawback as 
the original LRbTC when values used to calculate regression 
line can be more than an error bound away from the regression 
line. The version which corrects this problem is presented in Fig. 
4. 
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Fig. 4. Improved RT-LRbTC. 

Fig. 4. shows in step 2 the comparison between the 
regression line and the values used to calculate that regression 
line. If the distance from the line is more than the error bound, 
then first two values (‹(v1,t1),(v2,t2)›) are stored/sent and the new 
line is calculated from the following values ‹(v3,t3),(v4,t4),(v5,t5)›. 
If and when the difference is at an  accepted level, then in step 6 
the regression line parameters and starting time stamp of the line 
(a1,b1, 1) are stored and sent to the receiver. In that point the 
latency is N – 1 time steps (measurement interval) long as in the 
basic version of RT-LRbTC. In step 7 the next measured values 
are compared to the line and if the difference is less or equal to 
the error bound (step 8), the comparison continues with the next 
value. As long as this continues, there is no need to send 
anything to the sink. In the sink the receiver knows that the 
values measured one time step (measurement interval, t) 
before are within error bound from the regression line as long as 
no new line is received.  

There is one measurement interval time latency because 
when the measured value falls out from the linear section, then 
the new line is calculated using the last N values and the new 
line starts. The values sent to the sink are (a2,b2, 2). The previous 
line is ended one time step before ( 2 – t); however, the 
information of that is achieved only when the next value falls 
out from the line more than error bound ± . Thus, in this method 
only one sending period is needed for each linear section and 
thus the amount of the sending periods is only half compared to 
most other linear regression based methods and LTC method. In 
basic form of linear regression-based methods and also in LTC 
method, there is a needed to send starting point value with time 
stamp and end point value with time stamp for each linear 
section. 

In Fig. 5. the comparison of M-LRbTC and RT-LRbTC 
shows the difference between these algorithms. Both algorithms 
use N = 3 values to calculate (time stamps 1,2 and 3) the 
regression line at time stamp 3, thus at the beginning both 
algorithms get the same line (a1,b1). M-LRbTC sends the 

regression line starting value (line value c1 at time 1 = t1) to the 
sink at time stamp 3. RT-LRbTC sends the line parameters with 
the starting point of the line (a1,b1, 1), where the 1 = t1 to the 
sink at time stamp 3. At time stamp 11 the measured value falls 
out from the regression line. Thus, M-LRbTC sends the 
regression line end value (c2, 2), where 2 = t10, and calculates 
the new regression line from the measured values at time stamps 
11, 12 and 13. M-LRbTC sends the new regression line starting 
value c3 and line starting time stamp 3 = t11 at time moment 13 
when the new line is calculated. At time stamp 11, RT-LRbTC 
calculates the new regression line from the values at time stamps 
9, 10 and 11. When the receiver gets the new line parameters 
(a2,b2, 2), where 2 = t11 it knows that the previous line ended at 
time 2 – t = t10. 

Fig. 5. Comparison of M-LRbTC and RT-LRbTC. 

B. Compression efficiency of RT-LRbTC to compress 
environmental data 
RT-LRbTC algorithm’s compression efficiency was tested 

with the same data sets as the authors have used in [2] and with 
similar newer data sets. The Naruska measurement station data 
sets from 2018 and 2019 were achieved from the Finnish 
Meterological Institute’s open data service [14]. The data sets 
used were temperature, air pressure and wind speed from the 
whole years 2018 and 2019 with a 10-minute measurement 
interval. For each magnitude there were 51,961 values in year 
2018 data set and 52,463 values in year 2019 data set. The 
compression algorithm’s ability to compress those data sets was 
tested with different error bounds from 0.1 to 2.0. RT-LRbTC 
method was compared to the original M-LRbTC method, which 
is presented and tested in [2], and LTC method which has been 
the best algorithm in [2] when comparing the compression 
ratios. The algorithms have been programmed in MATLAB. M-
LRbTC, and LTC algorithms are exactly the same algorithms as 
in [2]. RT-LRbTC is a modification of M-LRbTC algorithm. M-
LRbTC and RT-LRbTC used three values to calculate the 
regression line. 

M-LRbTC method sends the starting point and ending point 
of each linear regression line segment. In RT-LRbTC only the 
line parameters and the time stamp for the line starting point are 
sent, thus the transmitting periods needed are reduced to half 
compared to the original method. In M-LRbTC method the two 
values (value and time) are sent twice for each linear segment 
compared to three values (line parameters a and b and time) 
needed to send once for each linear section in RT-LRbTC. 

The compression ratio (CR) is calculated by dividing the 
amount of original data by the amount of compressed data. 
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The results for the temperature data can be seen in Fig. 6. 
The results are very similar for both data sets (2018 and 2019). 
The LTC is superior compared to the other two algorithms. RT-
LRbTC benefits from the fact that there is only needed to send 
parameters once for each regression line. Actually, there are 
more regression lines needed in RT-LRbTC and in that way it is 
less efficient compared to M-LRbTC. 

Fig. 6. Comparison on the algorithms with temperature data. 

Similar comparison in compression ratios was done with air 
pressure data sets. The results for 2018 and 2019 data sets can 
be seen in Fig. 7. 

Fig. 7. Comparison of the algorithms with air pressure data. 

LTC algorithm is again superior compared to the other two 
and the compression ratios are generally remarkably higher than 

with temperature data. This is an indication that air pressure data 
in general is changing quite slowly and behaves quasi linearly. 
The error bounds with temperature data are not fully comparable 
because temperature is in Celsius degrees and air pressure in 
hectopascals (hPa). 

Fig. 8. Illustrates the comparison between algorithms to 
compress the wind speed data. The wind speed data is measured 
with 10-minute average value [14].  

Fig. 8. Comparison of the algorithms with wind speed data. 

Even with 10-minute average measurement the wind speed 
remains rather long periods in zero; however, on the other hand, 
it is also changing rapidly in other moments. Thus, it is not 
behaving that linearly and changing as slowly as the temperature 
and air pressure. The results in compression ratios are quite close 
compared to the temperature data. That is because of the rather 
long periods with consecutive measurements with zero value for 
wind speed. 

IV. RESULTS 
The results of compression ratios comparison for LTC and 

M-LRbTC are similar as in [2] also for 2019 data. RT-LRbTC 
suffers from the amount of the regression line calculations but 
benefits more from the fact that only one transmitting period is 
needed for each regression line compared with the two 
transmitting periods with M-LRbTC. 

 TABLE I presents the results as compression ratios when the 
error bound is 0.5 °C for temperature, 0.5 hPa for air pressure 
data and 0.5 m/s for wind speed data. These are realistic error 
bounds which could be used in real application. It can be seen 
that the compression ratios are similar for both data sets (2018 
and 2019) for each algorithm and each magnitude in 
comparison. Anyway, the compression ratios are slightly higher 
for 2019 data except M-LRbTC for air pressure data. The 
average change is the absolute average change between two 
consecutive values in the whole data set for given magnitude. 
For temperature data and wind speed data the average change is 

 

 
 

 



slightly smaller for 2019 data and it can indicate that the data is 
behaving slightly more linearly and thus resulting in a better 
compression ratio. 

TABLE I.  COMPARISON OF COMPRESSION RATIOS 

Data set 
Average 
change 

Compression Algorithms’ Compression 
Ratios 

LTC M-LRbTC RT-LRbTC 
Temperature 2018 0.223 9.49 3.90 5.65 

Temperature 2019 0.208 10.17 4.02 5.96 

Air pressure 2018 0,086 28.22 8.94 14.09 

Air pressure 2019 0,086 29.56 8.84 14.99 

Wind speed 2018 0,302 5.09 2.62 3.68 

Wind speed 2019 0,284 5.54 2.74 3.87 
 

TABLE II presents the comparison of the latencies in different 
phases of the algorithm operation. Only the algorithm’s inherent 
latency is taken into account, not the latency from the 
computational delay or from the data transmission. Only M-
LRbTC (2) and RT-LRbTC algorithms can present a predictable 
latency. RT-LRbTC presents the shortest latency in operation 
and it is dependent on the measurement interval. 

TABLE II.  COMPARISON OF LATENCIES 

Latency 
Compression Algorithm 

LTC M-LRbTC 
(1) 

M-LRbTC 
(2) RT-LRbTC 

At the 
beginning 

0 (N -1) x t (N -1) x t (N -1) x t 

In linear 
section 

length of the 
linear section 

length of 
the linear 
section 

t t 

Calculating 
new line not applicable N x t N x t t 

M-LRbTC (1): The linear regression line start point and end 
point values are sent. 

M-LRbTC (2): The linear regression line parameters are sent 
with the starting time stamp. 

V. CONCLUSIONS 
Different versions of linearity-based sensor data 

compression algorithms were presented and tested in this paper. 
The main focus was on compression ratio and the inherent 
latency from the algorithm itself. Many linearity-based 
compression algorithms presented in the field of research are 
model based methods demanding a set of data already available 
to be implemented. Those methods are not well suited for 
analyzing the sensor data stream in on-line mode if there are 
requirements for the latency. 

The presented and tested methods can be used in on-line 
mode for the sensor data stream; however, only the new 
variation RT-LRbTC can represent rather short and fixed 
latency. Its general compression efficiency is rather low with the 
tested data sets, but it benefits from the fact that only one 
transmitting period is needed for each linear segment. The 
wireless transmission is known to be the most energy consuming 
operation in wireless sensor nodes. The linearity-based methods 

presented benefits from the fact that environmental magnitudes 
behave rather linearly in a short time window.  

The next step will be to implement these linearity-based 
methods in an embedded edge device such as a wireless sensor 
node and test the methods in on-line mode for the data stream. 
The actual effect on energy consumption will be tested and 
measured and the computational complexity of different 
methods will be taken into account and analyzed in detail. 
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Abstract—In this paper simple temporal compression 
algorithms’ efficiency to reduce LoRa-based sensor node energy 
consumption has been evaluated and measured. It is known that 
radio transmission is the most energy consuming operation in a 
wireless sensor node. In this paper three lightweight 
compression algorithms are implemented in an embedded LoRa 
platform to compress sensor data in on-line mode and the 
overall energy consumption is measured. Energy consumption 
is compared to the situation without implementing any 
compression algorithm. The results show that a simple 
compression algorithm is an effective method to improve the 
battery powered sensor node lifetime. Despite the radio 
transmission’s high energy consumption, the sleep current 
consumption is a significant factor for the device overall lifetime 
if the measurement interval is long. 

Keywords—Internet of Things, edge computing, sensor data, 
compression, energy efficiency 

I. INTRODUCTION 
It is known that the most significant single energy 

consumer of wireless sensor node is the radio transmitter. A 
well-known method to reduce wireless sensor node energy 
consumption is to compress the data and thus reduce the radio 
transmitting periods. In this paper, three simple temporal 
compression algorithms are implemented in a LoRa-based 
sensor node, and the overall energy consumption is measured. 
The effect of the compression algorithm in battery lifetime has 
been evaluated. In this paper it has been demonstrated that if 
the measurement interval is rather long, then the most 
effective method to lengthen the battery lifetime is to 
minimize the sensor node sleep current consumption between 
the measurement and transmission periods. Minimizing the 
sleep current also improves the effectivity of the powerful 
compression algorithm to lengthen battery lifetime. Thus, the 
combination of very low sleep current consumption together 
with light temporal compression algorithm has been 
demonstrated to be an effective method to lengthen the battery 
lifetime of the LoRa sensor node. This kind of application 
could be useful for example in agricultural applications for 
measuring some environmental magnitudes. In different smart 
farming applications typical measured magnitudes are for 
example temperature and humidity. These magnitudes behave 
rather linearly, and thus the measurement interval can be 
rather long. In agricultural applications the sensor nodes are 
often located in the fields, thus requiring wireless transmission 
and a battery powered supply. Suitable applications could be 
also different smart city applications. Temporal compression 
algorithms used in this research are very effective for linearly 
behaving data. 

II. RELATED WORK 
There are some research papers about the energy 

consumption of wireless sensor nodes. In [1], many myths 
related to energy models of wireless sensor networks have 
been busted. For example, it is generally known that the radio 
transmission (sending data packets) is the most energy 
consuming operation, but actually keeping the radio in idle 
mode listening is in total a more consuming operation. This is 
because the transmitting and receiving last a very short time 
compared to the time that the radio is listening for incoming 
packets. It is also demonstrated that generic energy models do 
not fit for all devices even if the devices use a similar 
technology [1]. Thus, measurements need to be made to gain 
reliable results for certain devices used. The energy 
consumption models and battery lifetime experiments of 
different wireless sensor node technologies are published for 
example in [2][3].  

LoRa technology has been developed to be used in the 
Internet of Things applications. LoRa is a low-energy wide 
area network especially suitable for transmitting sensor data. 
There are several published research papers regarding energy 
consumption modelling for LoRa based sensor nodes, such as 
[4][5][6][7]. In [8] the energy consumption of different 
wireless sensor network technologies is compared. Papers 
have demonstrated that LoRa and SIGFOX offer the best 
lifetime for low intensity traffic. It is also demonstrated that 
the sleep power consumption is a significant factor for the 
device lifetime if the transmission period frequency is low [8]. 

In [6] the effect of LoRa parameters on the LoRa node 
energy consumption has been researched and measured. 
Higher spreading factor (SF) increases the time on air and thus 
increases the power consumption of transmission. But to 
achieve long range, high SF value needs to be used. In fact, 
the overall LoRa transmission energy consumption is 
dependent on different LoRa/LoRaWAN parameters such as 
spreading factor, coding rate, payload size, and bandwidth [6]. 

One well known method to reduce wireless sensor node 
energy consumption is to use data compression. Temporal 
lossy compression algorithms are often light and simple. If the 
wireless transmission periods could be reduced using data 
compression, it would reduce the overall energy consumption 
as the radio could be a longer time period on sleep mode.  

For example, with LoRaWAN Class A the device is not 
listening to downlink messages except after uplink 
transmission for two short downlink windows. Thus, it can 
remain in sleep mode until the data needs to be transmitted [9]. 



Thus, there are many research papers dealing with LoRa 
device energy consumption and other papers dealing with 
compression algorithms efficiency to reduce energy 
consumption. But not many experiments have been published 
on how the simple compression algorithm can reduce LoRa-
sensor node energy consumption and thus lengthen the battery 
lifetime. In this paper the effectiveness of simple temporal 
compression algorithms to reduce overall energy consumption 
of the LoRa sensor node is evaluated and measured. 

III. TEMPORAL COMPRESSION METHODS FOR SENSOR 
DATA 

Compression algorithms implemented and tested in this 
paper are simple temporal compression methods based on data 
linearity. Many environmental magnitudes behave rather 
linearly, and simple linearity-based algorithms utilize that 
behavior. The methods are very simple, easy to understand 
and easy to implement in an embedded platform. IoT wireless 
sensor nodes are often computationally constrained, and thus 
simple and light compression algorithms suit these devices 
well. Wireless sensor nodes are also often battery powered or 
even harvesting the energy from the environment. Thus, 
minimizing the energy consumption is important for 
lengthening the device lifetime.   

The implemented algorithms are Lightweight Temporal 
Compression (LTC) and Real-Time Linear Regression based 
Temporal Compression (RT-LRbTC). LTC is originally 
presented in [10]. RT-LRbTC is a modification of other linear 
regression-based compression algorithms, and it is originally 
presented by the authors of this paper in [11]. These 
algorithms are lossy methods meaning that reconstructed data 
after compression is not exactly the same as the original data. 
The maximum reconstruction error is determined by the error 
bound (ε) used. 

A. Lightweight Temporal Compression 
Lightweight Temporal Compression (LTC) is a well-

known temporal compression method. It was first presented in 
2004 in [10], and several modifications on that algorithm have 
been presented since then. It has proved to be a very effective 
compression algorithm, especially for environmental 
magnitudes [12]. As a disadvantage, the LTC has 
unpredictable latency, and thus it is not well suited for real-
time or near real-time applications [13]. In this paper the LTC 
is used as it is in its original version and transformed and 
implemented for embedded Arduino board from MATLAB 
version used in [11] and [12]. The LTC algorithm itself is 
computationally very light. With every new measured value, 
comparisons need to be made between the new value with 
error bound extremes to the previously calculated upper and 
lower limit lines. As a result of the comparisons in maximum 
two new lines are calculated. Calculating line parameters 
(slope and y-intercept) requires one division, one 
multiplication, one summation and subtractions. Thus, the 
compression algorithm is computationally very light. 

B. Real-Time Linear Regression based Temporal 
Compression 
Real-Time Linear Regression based Temporal 

Compression (RT-LRbTC) is also a very simple temporal 
compression algorithm. It is a modification from other linear 
regression-based algorithms, and it is developed especially for 
compressing the on-line sensor data stream. The algorithm’s 
suitability for compressing on-line data stream is based on 

minimizing the algorithm’s inherent latency. In general, this 
algorithm’s inherent latency is one measurement interval (Δt) 
long. The basic form of the algorithm uses 3 previous data 
values (N = 3) to calculate the regression line and uses it to 
predict future values with certain error bound. The algorithm 
is explained in detail in [11]. For every new measured value 
its value needs to be compared to the previously calculated 
regression line value in that time stamp. If the difference 
between the new value and regression line is more than error 
bound, then a new regression line is calculated. Calculating 
the regression line requires the sum of N times xk, xk

2, yk, xkyk, 
and the square of the sum of xk. xk is the time stamp and yk is 
the measured value. In this paper also N = 4 version is tested 
to see if calculating regression line with 4 values has any effect 
on the complexity and energy consumption of the 
compression algorithm calculation. The implemented version 
is derived to Arduino from MATLAB version used in [11]. 

IV. ENERGY CONSUMPTION OF IMPLEMENTED COMPRESSION 
METHODS WITH LORA CONNECTION 

Embedded LoRa-based sensor node used in this 
experiment was Arduino MKR WAN 1310 board. It has a 
Microchip SAM D21 32-bit Arm Cortex-M0+ based low 
power microcontroller and Murata CMWX1ZZABZ LoRa 
module. It also has a crypto chip ATECC508 by Microchip 
[14]. Arduino boards are widely used by hobbyists but also in 
research and in the industry due to their simplicity and ease of 
use. 

DHT22 sensor was used to measure temperature. DHT22 
is a low-cost temperature and humidity sensor with a digital 
output [15]. It is widely used by hobbyists for its low cost, and 
there are many project examples available on the internet 
where DHT22 sensor is used. There are also support libraries 
available for most used embedded development boards. The 
sensor has measurement resolution 0.1 Celsius degrees for 
temperature, and its accuracy is <±0.5 Celsius degrees for 
temperature measurement [15]. 

Arduino MKR WAN 1310 was powered by Lithium-
Polymer (Li-Po) battery. The Li-Po battery used had 2 000 
mAh capacity with 3.7 V nominal voltage. Thus, its energy 
capacity was 7.4 Wh which is 26 640 Ws. The Arduino board 
supports Li-Po battery with JST-PH connector, and it has a 
built-in battery charger. Arduino board can also be powered 
from the USB port, but the energy consumption is lower if 
powered from the battery. 

A. Measurement Setup 
The compression algorithms implemented were set to 

measure the temperature with DHT22 sensor at regular 
intervals. The embedded board was set to go to deep sleep 
mode between the measurements. After every measurement 
the algorithm compressed the data, and the compressed data 
was stored and sent via LoRa network if needed. The LoRa 
network used was a commercial network in Finland.  

The board’s current consumption was measured with 
oscilloscope current probe from the battery plus-wire, except 
that the deep sleep current consumption was measured with a 
digital multimeter (DMM), which was set in series with the 
battery. The other possibility would be to use a so called shunt 
resistor in series with the battery and measure the voltage over 
the resistor with oscilloscope voltage probe. The current probe 
was chosen to be used because of its simplicity and ease of use 



even though its accuracy is not very good when measuring 
very low-level current values. 

The measurement devices used were Tektronix MSO 4104 
Mixed Signal Oscilloscope with 1 GHz measurement 
bandwidth, and the probes used were Tektronix TCP0030 
Current Probe and TAP1500 Active Voltage Probe. The 
current probe has 1 mA sensitivity and 1 % DC accuracy [16]. 
The DMM used was Tenma RS232C TrueRMS model. 

B. Deep Sleep Current Consumption 
Deep Sleep current consumption was measured with the 

algorithms implemented on the board. The board was set to 
deep sleep mode between measurements. The DMM was set 
in series with battery wire. The measured deep sleep current 
was not dependent on the algorithm used, as the measurement 
result was the same with every algorithm tested and also 
without compression algorithm implemented. The measured 
deep sleep current was 116 µA – 117 µA. After the 
measurement instant and possibly LoRa-transmission, when 
the Arduino board went to deep sleep mode, the current 
dropped down immediately to 150 µA - 160 µA level, and 
continued going down quickly to 120 – 130 µA level and then 
more slowly to stabilize to 116 µA – 117 µA level.  It took 
about 20 seconds to gain the 117 µA level. The battery voltage 
was measured at the same time with the oscilloscope’s voltage 
probe connected to the board’s battery connection. The battery 
voltage was 3.99 V while measuring the deep sleep current. 
Thus, the power consumption in deep sleep mode was: Pds = 
Ubatt x Ids = 3.99 V x 117·10-6 A = 4.6683·10-4 W = 0.46683 
mW. 

The 117 µA current consumption in deep sleep mode is 
not very low for a modern microcontroller development 
board, and with some other boards it could be possible to 
achieve lower levels. 

C. Sensor Measurement and Algorithm Current 
Consumption 
On a regular basis the embedded board wakes up from the 

deep sleep mode and makes the measurement. The real-time 
clock (RTC) is running even when the board is in deep sleep 
mode, and it wakes up the board. After the wake up, the board 
measures the temperature from DHT22 sensor and applies the 
compression algorithm implemented. As a result of algorithm 
calculations, the board either sends the compressed value via 
LoRa-connection or falls into deep sleep mode to wait for the 
next measurement period. 

The current/energy consumption during sensor 
measurement and compression algorithm period was 
measured with oscilloscope current probe, and oscilloscope 
automatic measurement functions were used to show the mean 
values. The battery voltage was measured at the same time 
with voltage probe, and the oscilloscope MATH-function was 
used to multiply the measured values to get the power value. 
The oscilloscope measurement function “area” was used to 
calculate the power graph area to get the energy consumption. 
In Fig. 1. one measurement result can be seen. The deep sleep 
energy consumption with the same oscilloscope settings was 
also measured to be subtracted from the measurement period 
result. Thus, only sensor measurement and algorithm 
calculation period consumption were achieved. The sensor 
measurement, data compression and board shut down to deep 
sleep takes about 60 ms time (the high pulse in Fig. 1.). After 
the measurement and algorithm calculations, the current 

consumption did not go directly to the deep sleep level but 
remained slightly higher for 390 ms due to DHT22 sensor. 

 

Fig. 1. RT-LRbTC: sensor measurement and algorithm period. 

The oscilloscope measurement settings were: current 
probe 5 mA/div, voltage probe 1 V/div and horizontal scale 
100 ms/div. Each measurement was repeated ten times, and 
the average values of the measurements were used for better 
measurement reliability. The measurement results can be seen 
in TABLE I. Each value in TABLE I is an average value of 
the ten separated measurements in one second measurement 
window (oscilloscope screen scale 100ms/div = total 1 
second, as seen in Fig. 1.). 

TABLE I.  SENSOR MEASUREMENT AND ALGORITHM MEASUREMENT 
RESULTS 

 

The last line of TABLE I shows the results for the energy 
consumed for sensor measurement and algorithm calculations 
for each algorithm and also without any compression 
algorithm for comparison. The result is achieved by 
subtracting the deep sleep energy value (second last row) from 
energy value (third last row). It can be seen from the results 
that the values are on the same level for each algorithm and 
even without compression algorithm implemented, this means 
that the algorithm calculations do not affect at all the board’s 
energy consumption, or the effect is so small that it is not 
possible to recognize it with this measurement setup. As can 
be seen from the results, there is no significant difference 
between the algorithms. The results between the algorithms 
and without an algorithm are within measurement uncertainty. 
The measured differences are negligible. 

 No 
compression LTC 

RT-
LRbTC, 
N=3 

RT-
LRbTC, 
N=4 

Current (mA) 1.3977 1.4247 1.4016 1.4500 

Battery voltage 
(V) 

3.9949 3.9925 3.9906 3.9963 

Power (mW) 5.5802 5.6836 5.6208 5.7814 

Energy (mWs) 5.5775 5.6836 5.6208 5.7814 

Deep sleep 
energy (mWs) 

1.0003 0.9013 0.8428 0.9492 

Measurement + 
algorithm 
(mWs) 

4.5772 4.7823 4.7780 4.8322 

 



D. LoRa Transmission Energy Consumption 
LoRa node used the spreading factor SF10 for 

transmitting, and the network sent the confirmation with SF9 
or SF12. During the whole testing period the network 
confirmation was sent with SF9 for 49.2 % of all occasions 
and with SF12 for 50.8 % for all occasions. TABLE II shows 
the energy consumption measurement results when LoRa 
node is sending the data packets with SF10, and the network 
sends the confirmation with SF9. In TABLE III are the results 
when the data up is with SF10 and data down with SF12. 
Every measurement is repeated ten times, and the results are 
the average values of the measurements. In Fig. 2. one result 
for the SF10 uplink and SF9 downlink situation can be seen. 
It seems that the LoRa sensor node is not receiving the 
confirmation from the network even though the network has 
sent the confirmation. Two 10 mA pulses, the first 
approximately one second after the transmit, and the second 
one two seconds after transmit are the two receive windows 
that follow the uplink. Because the downlink is not received 
during the first window, then the second receive window 
opens two seconds after the transmit. In Fig. 3. there is the 
result of SF10 uplink, SF12 downlink situation. In this case it 
seems that the LoRa node has received the downlink 
confirmation because the receive window is rather long and 
not followed by the second receive window. 

In TABLE II and TABLE III, the last row transmission 
energy is calculated by subtracting the deep sleep energy and 
previously measured sensor measurement and algorithm 
energy consumptions (TABLE I) from the measured 
transmission energy value (third last row in TABLE II and 
III). The deep sleep energy was measured with the same setup 
and measurement equipment settings while the LoRa-sensor 
node was in deep sleep mode. In Fig. 2. and Fig 3. the current 
measurement with the current probe is the blue line (probe 1), 
battery voltage is the light blue line (probe 2), and power is 
the red M-line which is voltage multiplied with current. The 
results in Fig. 3. include the sensor measurement and 
algorithm calculations, but Fig. 2. includes only the sensor 
measurement as the compression algorithm was not 
implemented in this case. The transmission period is 
approximately 400 ms long, and it is followed by the network 
confirmation time window one second after the transmission. 

As can be seen in the transmission energy values (last row 
in TABLE II and TABLE III) there is not a big difference 
between the algorithms and taking into account the 
measurement uncertainty of low current values measured with 
current probe, the differences are negligible. The results with 
no compression algorithm implemented are even higher than 
with LTC algorithm. The results of LTC algorithm 
compression are the temperature value (float number) and 
time stamp (which is only a sequence number, integer), thus 
the transmitted data is 8 bytes. With RT-LRbTC algorithms 
the regression line parameters (slope and base, both float 
numbers) with time stamp (sequence number, integer) are sent 
in total 12 bytes. Thus, the amount of data sent is bigger with 
RT-LRbTC algorithms, and thus this could explain a slightly 
higher energy consumption in the transmission. In general, 
these results can be regarded to be approximately the same for 
each algorithm. The differences are negligible and can be 
explained by measurement uncertainty. 

 

 

 

TABLE II.  UPLINK SF10, DOWNLINK SF9 

 No 
Compression LTC 

RT-
LRbTC, 
N=3 

RT-
LRbTC, 
N=4 

Current (mA) 4.9736 4.7976 5.1049 5.2293 
Battery 
voltage (V) 

3.9928 3.9924 3.9887 3.9897 

Power (mW) 19.842 19.143 20.323 20.652 

Energy 
(mWs) 

79.372 76.565 81.289 82.605 

Deep sleep 
energy (mWs) 

3.5636 4.0993 4.971 4.632 

Transmitting 
(mWs) 

71.2312 67.6834 71.54 73.1408 

TABLE III.  UPLINK SF10, DOWNLINK SF12 

 No 
Compression LTC 

RT-
LRbTC, 
N=3 

RT-
LRbTC, 
N=4 

Current (mA) 7.4714 7.3759 7.7266 7.598 
Battery 
voltage (V) 

3.9919 3.9918 3.9879 3.9851 

Power (mW) 29.807 29.425 30.791 30.061 

Energy 
(mWs) 

119.21 117.68 123.15 120.26 

Deep sleep 
energy (mWs) 

3.5636 4.0993 4.971 4.632 

Transmitting 
(mWs) 

111.0692 108.7984 113.401 110.7958 

 

The oscilloscope settings were 10 mA/div for current 
probe, 1 V/div for voltage probe, and the horizontal scale was 
400 ms/div. The values were measured using oscilloscope 
mean value measurement function from the oscilloscope 
screen area which was 4 seconds in total. The settings can be 
seen in Fig. 2. and  Fig. 3. 

Fig. 2. Measurement and LoRa transmission period with SF10 uplink and 
SF9 downlink. No compression algorithm implemented 

 



 

Fig. 3. RT-LRbTC (N=3). Measurement, algorithm and LoRa transmission 
period with SF10 uplink and SF12 downlink 

V. OVERALL ENERGY CONSUMPTION AND BATTERY 
LIFETIME 

The overall energy consumption of the LoRa sensor node 
with the compression algorithm implemented is combined 
from the measurement event and algorithm consumption 
(WM), which happens on a regular basis (measurement interval 
Δt), the LoRa transmission event consumption (WS) which 
frequency of occurrence depends on the measurement interval 
(Δt), and the compression ratio (CR). The overall time is tx. 
Between the measurement events the device is in deep sleep 
mode and its power consumption is Pds. The total energy 
consumption (WTOT) can be calculated approximately by (1): 

 

(1) 

Where Pdstx is the energy that the device uses in deep sleep 
mode during the whole time tx. This value includes the 
measurement and transmission periods as well as the deep 
sleep values were subtracted from the other energy values in 
TABLEs I-III. tx/Δt is the number of the measurement periods. 
tx/(CR x Δt) is the number of transmission periods. 

As the DHT22 temperature sensor has the accuracy of ±0.5 
Celsius degrees, it is reasonable to use error bound value ε = 
0.5 Celsius degrees for compression algorithms as an 
example. In [11] the LTC and RT-LRbTC (N = 3) have 
achieved the compression ratios CR = 9.5-10.2 (LTC) and CR 
= 5.5-6.0 (RT-LRbTC) for real temperature data with a 10- 
minute measurement interval (Δt), when the error bound used 
has been ±0.5 Celsius degrees. RT-LRbTC with N = 4 has not 
been tested with available temperature data set. The 
temperature data sets used in [11] were real temperature data 
sets achieved from Finnish Meteorological Institute’s open 
data service. The data sets were Salla Naruska measurement 
station data from whole years 2018 and 2019. The temperature 
data used was measured and presented with 0.1 Celsius 
degrees resolution. 

As an example, the 2 000 mAh battery lifetime can be 
calculated with 10-minute measurement intervals and with 
measurement results from TABLEs I, II and III. The equation 
(1) solved for overall time tx is (2): 

 

(2) 

 

With a 10-minute measurement interval, the Δt = 600 s. 
The 2 000 mAh Li-Po battery total energy is WTOT = 7.4 Wh = 
26 640 Ws. This amount of available energy was used even 
though it is a rather optimistic estimation. For example, if the 
battery powered sensor node is located outside, the 
temperature can be as low as -30 Celsius degrees in Finland. 
It is well known that the capacity of lithium-based batteries 
can drop significantly in cold conditions. 

The battery lifetime without any compression algorithm 
can be estimated by using CR = 1 value. For other parameters 
the no compression measurement values from TABLEs I-III 
can be used. The values used (no compression): Pds = 0.46683 
mW, WM = 4.5772 mWs, WS = 91.4689 mWs. The WS value is 
calculated from TABLE II and TABLE III values by taking 
into account that 49.2 % of transmitting periods were SF10, 
SF9 events and 50.8 % were SF10, SF12 events. The 
estimated battery lifetime without any compression algorithm 
used by equation (2) is: 42 494 353 s = 491.8 days 

The battery lifetime with LTC algorithm implemented was 
calculated with compression ratio CR = 10. Thus, overall 
battery lifetime with LTC algorithm if the whole battery 
capacity can be used is: 54 415 973 s = 629.8 days. The battery 
lifetime is 28.1 % longer than without compression. 

In TABLE IV are the results for all tested algorithms with 
their measured energy consumption values. The compression 
ratio used for RT-LRbTC algorithms was CR = 6. 

TABLE IV.  BATTERY LIFETIME WITH DIFFERENT ALGORITHMS 

 No 
Compression LTC 

RT-
LRbTC, 
N=3 

RT-
LRbTC, 
N=4 

CR 1 10 6 6 
Battery lifetime 
(days) 

491.8 629.8 615.9 616.0 

 

With RT-LRbTC algorithms the battery lifetime is 
lengthened by 124.2 days, which is 25.2 % longer lifetime 
than without any compression. 

The deep sleep energy consumption and measurement 
intervals are very significant parameters for the LoRa-node 
lifetime together with the compression ratio. In this example 
the measurement interval is rather long as is often the case in 
agricultural applications. Thus, the node’s deep sleep energy 
consumption determines mostly the battery lifetime. The 
Arduino MKR WAN 1310 deep sleep current (measured 117 
µA) is not an especially low level for a modern embedded 
sensor node. If the deep sleep power consumption could be 
reduced by 50 %, then the battery lifetime without any 
compression would be 783.6 days, with LTC algorithm 
1203.7 days and with RT-LRbTC algorithms 1154 days. Thus, 
the LTC algorithm would lengthen the lifetime by 420 days, 
which is 53.6 % longer lifetime than without any compression. 
The RT-LRbTC algorithms would lengthen the lifetime by 
370 days, which is 47.2 % longer than without any 
compression.  

If a bigger reconstruction error is allowed, then the error 
bound can be higher than 0.5 degrees. With bigger error bound 

 



the compression ratio is better thus reducing the overall energy 
consumption. In [11] the authors have simulated the same 
compression algorithms with real temperature data with 10- 
minute measurement interval. For those data sets the 
compression ratio has been up to 20 for LTC with 1.0 degrees 
error bound and up to 10 for RT-LRbTC algorithm with 1.0 
degrees error bound. Fig. 4.  presents the 2000 mAh battery 
lifetime for LTC and RT-LRbTC (N=3) algorithms with 
different error bound values. The CR values for different error 
bounds are the same as in [11]. The battery lifetime 
lengthening is rather limited if the error bound is increased 
from 0.5 degrees to 1.0 degrees. The effect is only about 10 
days. Thus, it should be considered if using higher error bound 
is worth of having a significantly bigger reconstruction error. 

Fig. 4. The effect of error bound on battery lifetime 

In general, it is not possible to affect the energy 
consumption that the measurement itself consumes and the 
LoRa-transmission consumes a lot. LoRa radio can be set to 
use certain spreading factor for lower energy consumption, 
but it can shorter the range. Thus, the most effective ways to 
reduce overall energy consumption in this kind of sensor node 
is to choose the low energy consumption embedded platform, 
which has very low sleep current consumption and to use an 
effective compression algorithm suitable for low power sensor 
node. If the measurement interval was shorter, then the data 
would behave more linearly, and the linearity-based 
compression algorithms would behave more effectively and 
result in higher compression ratio. The effect in energy saving 
achieved with data compression would be bigger because 
there would be more data transmission periods if no 
compression algorithm is used, and a higher compression ratio 
would result in higher reduction in transmission periods. It 
would underline the compression algorithm’s effect on 
reducing the sensor node’s overall energy consumption. In 
[11] the compression ratio values achieved with LTC and RT-
LRbTC (N=3) for air pressure data with 10-minute 
measurement interval were almost CR = 30 (for LTC) and CR 
= 15 (for RT-LRbTC) when the error bound was 0.5 hPa. 
Thus, it can be estimated that the effect of these compression 
methods on overall energy consumption would be bigger if the 
air pressure was the measured magnitude. 

VI. CONCLUSIONS 
In this paper we implemented simple sensor data 

compression algorithms on LoRa-based sensor node. The 
overall energy consumption was measured with and without 
implemented compression algorithm. The measurement 
results demonstrated that the tested compression algorithms 
are computationally so light that due to calculations they do 
not have any effect on embedded device energy consumption. 

The overall saving in energy consumption is due to the 
reduced amount of radio transmission periods thanks to data 
compression. The measurement interval was ten minutes, 
which is rather long but can be typical in agricultural 
applications measuring some environmental magnitudes. Due 
to the long measurement interval, the device’s sleep energy 
consumption was proved to be the most significant factor in 
the device’s lifetime. 
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Abstract
Purpose –Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is
the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the
number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening
the lifetime of a battery-powered wireless sensor node.
Design/methodology/approach – In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The
experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress
sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.
Findings – Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption
significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the
measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for
reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.
Originality/value – This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node
by compressing sensor data in online mode with simple temporal compression algorithms.

Keywords Internet of things, Energy efficiency, Compression, Sensor data, Edge computing

Paper type Research paper

1. Introduction

Sensors are fundamental components of internet of things (IoT)
design. According to a report published in 2021, 40% of IoT
engineers use environmental sensing in their IoT design, and only
14% do not use sensor technology at all in their IoT design
(Farnell, 2021). Typical applications using environmental
sensing are, for example, different home control-related
applications where the sensors are measuring, for instance, air
quality, temperature, humidity and air pressure. Environmental
sensors are also widely used in industrial applications and
particularly in agricultural applications. In agriculture, precision
agriculture (PA) requires up-to-date information from the
environment and from the field for decision-making to improve
quality and production (Jawad et al., 2017).
Most IoT solutions use wireless connections between the

edge device, gateway and cloud. According to the Farnell
report, 77% of the engineers who responded to a survey used a
wireless connection in their IoT design. Only 23% use wired

connectivity (Farnell, 2021). Sensors and wireless sensor
networks (WSNs) are fundamental technologies, for example,
in smart environment monitoring systems. Smart environment
monitoring systems can be used in agriculture for smart
farming and for monitoring air quality, water pollution and
radiation pollution (Ullo and Sinha, 2020).
Globally, there are already more IoT devices than people. It

is estimated that the number of IoT devices will triple from 8.74
billion in 2020 to more than 25.4 billion in 2030 (Farnell,
2021). IoT devices are often battery-powered and will be used
in every area of our lives. Therefore, the energy consumption of
IoT devices is an important issue. By minimizing the energy
consumption, it is possible to lengthen the device or battery
lifetime, thus reducing the overall costs. At the same time, it is a
well-known fact that the wireless connectivity is the single most
energy-consuming task in a wireless IoT sensor node. Themost
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energy-consumingmodes in wireless sensor nodes are when the
radio is transmitting, receiving or idle mode (Harrison et al.,
2016; Lin et al., 2021). According to Farnell report (Farnell,
2021), Wi-Fi is the most popular type of wireless connectivity
followed by cellular (4G/LTE/5G), Bluetooth low-energy and
LoRa. LoRa is a low-power wide-area network technology that
is well suited for energy-constrained sensor devices located far
from the base station.
In IoT home applications, it is rather easy to power the

devices from the mains power supply, but even these are often
battery-powered for installation simplicity. In many other
sectors, it is not even possible to use the mains power supply to
power the devices. Typical applications where the devices need
to be battery-powered or energy-harvesting powered are, for
example, different agricultural and environmental monitoring
applications where IoT devices can be spread to a
geographically wide area in the field (Prauzek et al., 2018).
There are many methods for reducing the overall energy

consumption of a wireless sensor node. Wireless sensor nodes
consume energy mainly in sensing, processing and data
communication. At other times, it can be in the sleep mode
(Lin et al., 2021). The effective use of sleep modes between
sensor measurements is a significant method for reducing
energy consumption (Väänänen and Hämäläinen, 2021).
Another method to reduce energy consumption in IoT sensor
nodes is to lengthen the sampling interval, thus keeping the
device in sleep mode for longer periods (Lin et al., 2021). This
also reduces the number of transmitting periods with a wireless
connection; thus, it is a very effective way to reduce energy
consumption. Lengthening the sampling interval results in
lower precision in the measured data, as it is not possible to
detect sudden and rapid changes when they occur between
measurements. It is impossible to obtain any information
regarding the measured magnitude changes and the direction
of change betweenmeasurements.
Different sensor data compression methods are one solution

to improve this situation. It is possible to compress the raw
sensor data in the sensor node, thus reducing the amount of
data required to transmit via wireless connection (S�ac�aleanu
et al., 2018). It is also possible to reduce the number of
transmitting periods by using a temporal compression
algorithm, and at the same time, obtain the information if the
measured values change rapidly. Many temporal compression
methods are computationally light and simple. These methods
can be used for IoT devices that are computationally
constrained and have limited energy resources.
In this study, the energy consumption of LoRa sensor node

with different LoRa modulation parameters and temporal
compression algorithms was evaluated with practical
measurements. This study demonstrates that the sleep mode
energy consumption, LoRa modulation parameters and
compression algorithm used have a significant effect on the
overall energy consumption of an IoT sensor node. The
remainder of this paper is organized as follows. The LoRa and
LoRaWAN wireless IoT protocols and their basic parameters
are presented in Section 2. Section 3 presents the basics of
temporal compression algorithms, and the implemented
compression algorithms are presented in more detail. The test
and measurement setup and measurement challenges are
presented in Section 4. The measurement results with different

LoRa parameters and implemented algorithms are discussed in
Section 5. The combined results and overall energy
consumption with different LoRa parameters and algorithm
combinations are presented in detail in Section 6. Finally,
Section 7 concludes the paper.

2. LoRa and LoRaWAN

LoRaWAN is a low-power wide-area (LPWA or LPWAN)
networking protocol developed to be an energy-efficient
wireless protocol to connect battery-powered IoT devices to the
internet (LoRa Alliance, What is LoRaWAN Specification).
LoRaWAN is optimized to extend the battery lifetime, capacity
and range of IoT devices as well as tominimize costs.
Several other wireless technologies are available for use in

IoT devices. Wi-Fi and Bluetooth low energy are widely used
for communication in personal devices, especially for short
distances. Cellular technology is suitable for applications in
which a large amount of data must be transmitted over a long
range. LoRa offers very low power consumption and a long
range for transmitting sensor data a few times per hour (LoRa
Alliance, What is LoRaWAN Specification). Another low-
power and long-range wireless technology is the SIGFOX.
Both LoRa and SIGFOX are asynchronous technologies;
therefore, nodes can be in sleep mode and wake up only when
there is a need to transmit data (Morin et al., 2017). Each
wireless technology has its own characteristics, advantages and
disadvantages. Thus, there is not one single technology suitable
for every application. LoRa is a very potential technology for
sensor devices when the transmitted amount of data is rather
limited and low-energy consumption is required. Commercial
LoRa networks have good geographical coverage. For example,
in Finland, the commercial network is operated by Digita, and
its network covers almost the entire country if a terminal device
is located outdoors (Digita, LoRaWAN network coverage in
Finland). Even for indoor devices, the network covers most of
the country.
LoRa is a physical layer that includes wireless modulation,

enabling long-range connectivity. LoRa uses chirp spread
spectrum (CSS) modulation, which enables low power
consumption and long range in wireless connectivity at the
same time (LoRaAlliance,What is LoRaWANSpecification).
LoRaWAN is a communication protocol and system

architecture that uses the LoRa physical layer to achieve a low-
power operation and a long communication range. LoRaWAN
network uses a star topology in which the nodes are not
associated with a specific gateway/base station. The transmitted
data can be received by several base stations, and the network
side removes redundant packets (Lora Alliance, What is
LoRaWANSpecification).
Three different device classes are described in the LoRaWAN

protocol. The most energy efficient of the three classes is Class
A. The Class A device does not listen to the downlink messages
from the network, except for two short time windows after every
uplink transmission (LoRa Alliance, What is LoRaWAN
Specification). Thus, between the transmitting periods, the
device and LoRa radio can be in sleep mode. In addition to
effective modulation, operation at the sub-GHz level enables a
long communication range. LoRa communication uses an
unlicensed industrial, scientific and medical band (Lavric and
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Popa, 2018). Sub-GHz frequency range helps signal
penetration through the obstacles between the device and base
station. Sub-GHz frequency and LoRa modulation enable the
long range as well as the good network coverage for devices
located indoors.
The CSS modulation spreads the narrowband signal over a

large frequency band, thus enabling the signal to be very
resistant to noise and immune for interference (Lavric and
Popa, 2018). In LoRa CSSmodulation, the spread spectrum is
achieved with a chirp signal that continuously varies its
frequency (Semtech, What are LoRa and LoRaWAN). LoRa
supports spreading factors (SFs) from 6 to 12. The higher SF
allows a longer range, but it also results in higher time on air
(ToA) values and lower data rates (DRs) (Lavric and Popa,
2018; Semtech,What are LoRa andLoRaWAN). For example,
according to Semtech (Semtech, What are LoRa and
LoRaWAN), the range with the upper link SF10 is 8 km, but
with SF7, the range is only 2 km. These values are examples
and vary greatly depending on the circumstances. The ToA is
correspondingly 371ms with SF10 and 61ms with SF7. The
range depends significantly on the terrain, but this provides an
idea of the SF effect on the range.
The LoRa nodes have the possibility of setting theDR from 0

to 6. The DR represents a predefined set of LoRa settings such
as the SF (Lavric and Popa, 2018). The LoRa specification
describes the DR settings as presented in Table 1 (LoRa
Alliance, RP002-1.0.0 LoRaWAN Regional parameters). The
configuration column presents the SF and channel width.
The LoRaWAN protocol defines an adaptive DR (ADR)

mechanism, which optimizes the DR used. LoRa devices
located close to the base station do not require a high link
budget that is with SF12. ADR optimizes the SF used and
minimizes the ToA. The ADR has simple rules for changing the
DR used. If the link budget is high, then the SF can be
increased and vice versa (Semtech, What is an ADR). It is also
possible to set the LoRa node to use a certain DR, but the ADR
is designed to optimize the SF and ToA, and thus, it should be
the recommended setting. The ADR scheme maximizes
the battery lifetime. LoRaWAN also supports optional
acknowledgments (ACK) and message retransmissions. The
LoRaWAN node can indicate whether an ACK is requested in
each transmission. If ACK is required, the node is expecting to
receive ACK (confirmation) in one of the two receive windows
after message transmission. If the ACK is not received, the
LoRaWAN node retransmits the message with the same DR as
originally, and then DR decreases every two attempts to lower
DR until DR = 0 if the ACK is not received. (Casals et al.,
2021). If the ACK is not requested, the LoRaWAN node

listens to the possible downlink message from the network in
any case but does not retransmit the message if the
confirmation is not received. The LoRa network server can
send a downlinkmessage even if it is not requested.

3. Temporal compression methods

Many temporal compression methods are well suited for
sensor-based 1D data. Data compression is a common method
for reducing data size. Compression methods can be divided
into lossless and lossy methods. The compression ratios
achieved are not very high with lossless methods (Lin et al.,
2019). Lossy algorithms can achieve a compression ratio that is
several times higher than that of lossless algorithms, but with
the cost of reconstruction error (Lu et al., 2021). There is often
a temporal correlation in sensor data if the observation window
is short. Temporal compression methods use this temporal
correlation (Lin et al., 2019).
The temporal compression methods used in this study are

simple and computationally lightweight compression
algorithms. The methods used in this study are based on data
linearity. The environmental magnitudes behave rather linearly
if the observation window is short. For example, air
temperature in a shadow does not change significantly in
seconds. It normally requires minutes to observe the
temperature change, even when it is changing at its extreme
speed. If the temperature is rising, it changes quite linearly as it
behaves similarly also if it is going down.
The compression methods used in this study either find

linear segments from the sensor data stream with certain error
bound or use linear regression from previous values to predict
future values with allowing certain error bound. Thus, the
compressed data set loses some information. These methods
are computationally light and thus suitable for constrained
battery-powered IoT sensor nodes. These methods are also
easy to understand and implement.
The compression algorithms used in this paper were

lightweight temporal compression (LTC) and two versions of
the real-time linear regression-based temporal compression
(RT-LRbTC). The two versions of the RT-LRbTC vary from
each other by the number of sensor values used to calculate the
regression line. Three and four values (N values) versions were
tested.

3.1 Lightweight temporal compression
The LTC is a well-known compression algorithm that is
particularly suitable for environmental data. It was first
presented by Schoellhammer et al. (2004). It has also been used
to compress sensor data in wireless body sensor networks
(WBSN) (Giorgi, 2017). Several modifications of the original
LTC have been presented (Parker et al., 2013; Azar et al., 2018;
Sarbishei, 2019; Li et al., 2018; Klus et al., 2021).
LTC has proven to be a very effective compression

algorithm, particularly for linearly behaving environmental
sensor data (Väänänen and Hämäläinen, 2019). One major
disadvantage of LTC is its unpredictable latency. As the LTC
compresses the data in the online mode by finding the best and
longest linear segment from the incoming sensor data, it sends
the linear segment endpoint to the sink only when the algorithm
finds it as the new value falls off from the linear segment. If the

Table 1 LoRaWAN DR settings

DR Configuration Physical bit rate (bit/s)

0 SF12/125 kHz 250
1 SF11/125 kHz 440
2 SF10/125 kHz 980
3 SF9/125 kHz 1,760
4 SF8/125 kHz 3,125
5 SF7/125 kHz 5,470
6 SF7/250 kHz 11,000
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method compresses the data very efficiently, then the
transmitting intervals become long, and the receiving side does
not even know in which direction the values are changing.
Thus, LTC is not well suited for compressing sensor data in
real-time or near-real-time applications (Giorgi, 2017).
In this study, the LTC was used as in its original version

presented by Schoellhammer et al. (2004). The same version
was used by Väänänen and Hämäläinen (2019, 2020) as
MATLAB version. In this study, the LTCwas programmed for
the Arduino and implemented on the Arduino MKR WAN
1310 LoRa board.
The LTC itself is computationally light because with every

new value, it is only necessary to make a comparison between
the new value with error bound extremes and the previously
calculated upper and lower limit lines. As a result of the
comparison, a maximum of two new lines must be calculated to
create new upper and lower limit lines that will be used with the
next value. Calculating the new limit line parameters (slope and
y-intercept) requires one division, one multiplication, one
summation and subtractions, thus resulting in a
computationally simple algorithm.

3.2 Real-time linear regression-based temporal
compression
RT-LRbTC uses linear regression calculated from previous
sensor values to predict future sensor values. This type of
compression algorithmworks well if themeasured data behaves
rather linearly. This is the case for many environmental
magnitudes, such as temperature, humidity and air pressure.
RT-LRbTC is based on several other simple linear

regression-based algorithms. Other simple linear regression-
based compression algorithms have also been developed
(Väänänen and Hämäläinen, 2019; Hung et al., 2013;
Duvignau et al., 2019). RT-LRbTCwas originally presented by
Väänänen and Hämäläinen (2020). RT-LRbTC was
developed especially for compressing sensor data in online
mode. It has a shorter inherent latency than other linearity-
based compression methods, which is its most significant
benefit compared to other methods (Väänänen and
Hämäläinen, 2020).
The inherent latency of the RT-LRbTC algorithm is one

measurement interval Dt in the linear section. The algorithm uses
N previously measured values to calculate the regression line,
which predicts future values with a certain error bound («)
allowed from the line.Newmeasured sensor value is compared to
the previously calculated regression line. If the difference from
the line is smaller than « , then the algorithm waits for the next
measured value. When the new value falls off from the linear
section (distance greater that the error bound « from the line),
then the new line is calculated from the values already available.
From the calculated line, the line parameters and time stamp are
sent/stored. On the network side, if new parameters are not
received, then the values follow the previous regression line with
the error bound allowed. N is a minimum of three, and in this
study, N was three and four (two versions). Calculating the new
regression line requires some calculation: the sum of N times xk,
xk

2, yk, xkyk and the square of the sum of xk. xk is the time stamp
(sample number) and yk is the measured value.N = 3 is the basic
form of RT-LRbTC, and N = 4 version was also tested in this

study to see whether the required calculations had any effect on
the overall energy consumption.
The RT-LRbTC algorithm was tested with real measured

temperature data by Väänänen and Hämäläinen (2020). In the
data sets used, the measurement interval was 10min. The data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets used were two full-year data
sets with a 10-min measurement interval. As a result, with 0.5°
C error bound, the RT-LRbTC algorithm has achieved
compression ratio CR = 5.5–6.0 (Väänänen and Hämäläinen,
2020). The error bound « = 0.5°C represents the maximum
difference between the original measured values and
reconstructed values from the compressed data. The average
reconstruction error is smaller than the error bound used. The
compression ratio achieved with a certain linearity-based
compression algorithm depends on the measured magnitude
characteristics and error bound used. A higher error bound
results in a better compression ratio, but with the cost of a
larger reconstruction error.

4. LoRa device energy consumption with
compression algorithm implemented

The LoRa SF used determines the ToA and thus it also
determines how much energy a transmission consumes. This is
because if the ToA is longer, then the LoRa radio is
transmitting for a longer time and consumes energy for a longer
time as well.
Väänänen and Hämäläinen (2021) measured the LoRa

device energy consumption with ADR set on, and thus, the
LoRa device was transmitting with a DR of 2 (SF10). The
device was in a stable place, and thus, the conditions did not
change, and the DR remained constant. The only difference
between the energy consumption of the transmitting periods is
the difference between whether the downlink is received or not.
If the downlink is received, the energy consumption increases
as the device receives the data. If the downlink is not received,
then the LoRa device only listens shortly during the two receive
windows, and the overall energy consumption is lower. The
downlink message is used by the network server for
acknowledgemessages (ACK) (Maudet et al., 2021).
In this study, a setup similar to that of Väänänen and

Hämäläinen (2021) was used for the practical experiments and
energy consumption measurements. In this study, the ADR was
not on, and the DR was set (fixed) for every transmitting period.
TheDRs tested ranged fromDR0 toDR5. All of these DRs have
a channel width of 125kHz. The downlink SF was automatically
set from the network and was not controlled in this study.
Normally, a downlink message has the same SF as an uplink
message if the first receive window is used. For the second receive
window, the SF12 is used as the default (Casals et al., 2021).
The LoRa device used was Arduino MKRWAN 1310 board.

The Arduino MKR WAN 1310 has a Microchip SAM D21 32-
bit Arm Cortex-M01 based microcontroller and a Murata
CMWX1ZZABZ LoRa module (Arduino MKR WAN 1310).
The Arduino MKR WAN, 1310 was chosen because of its
simplicity and ease of use. It is also very popular among hobbyists
but is also widely used in industry for piloting and experiments.
The temperature was measured using a DHT22 sensor. The

DHT22 also measures humidity, but for this experiment, only
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temperature was used. DHT22 is a low-cost sensor with a
digital output. DHT22 sensor has measurement resolution for
temperature 0.1°C and its accuracy is < 60.5°C (DHT22
temperature and humidity sensor). Another popular and rather
similar temperature and humidity sensor is DHT11, which is
often used in agricultural applications (Rehman et al., 2022). In
this study, DHT22 was chosen because it is slightly more
accurate and has wider measurement ranges; however, it is only
slightly more expensive. It is well suited for this type of
experiment, where the accuracy requirement is not high.
The Arduino MKR WAN 1310 was powered by a 2,000

mAh lithium-polymer (LiPo) battery. The LiPo battery has a
3.7V nominal voltage, resulting theoretically 7.4Wh total
energy capacity, which equals 26,640 Ws. The battery has a
JST-PH connector that can be directly used with the Arduino
MKR WAN 1310 board. The energy consumption of the
Arduino board is lower when powered by a battery than when
powered by the USB port. If the board is powered by the USB
port, then one LED is always ON, and also USB IC-chip
consumes extra energy. The device setup is illustrated in
Figure 1. The setup was built for this experiment only, but it
could be used in real practical case when enclosed properly
against environmental conditions.

4.1Measurement setup
For the experimental energy consumption measurements, the
Arduino board was set to measure the temperature with the
DHT22 sensor at regular intervals. After each measurement,
the compression algorithm was applied by microcontroller. If
the result of the algorithm required data transmission, then the
data were sent via the LoRa connection. After every
measurement event and possible data transmission, the device
was set to go to deep-sleep mode. The device woke up only for
the measurement, compression algorithm and possible
transmission periods. The LoRa network was a commercial
network operating in Finland.
The current consumption in the active mode was measured

using a shunt resistor. Two oscilloscope channels were used to
measure the voltage across a 10 X shunt resistor, which was in
series at the battery plus wire. Both oscilloscope channels used
battery negative terminal as the reference level. The
measurement setup is illustrated in Figure 2(a). Current

consumption was calculated from the measured voltages I =
(V1 –V2)/R, whereR is the shunt resistor (10X).V2 can also be
used to measure the supply voltage in the battery connection of
the board. Thus, the power consumption of the device is:

P ¼ V � I ¼ V2 � V1 � V2ð Þ
R

(1)

In a previous study by Väänänen and Hämäläinen (2021),
current was measured using an oscilloscope current probe.
That kind of setup is shown in Figure 2(b), where the ammeter
is the current probe. The current probe is very easy to use, but
its accuracy is poor when measuring low-level values. The
shunt resistor measurement of the current is more accurate and
repeatable. The results obtained by Väänänen and Hämäläinen
(2021) were used in this paper for comparisonwhen available.
In this study, the current consumption in the deep-sleep

mode was measured using a digital multimeter (DMM) in
series with a battery wire. The DMM is more accurate for
measuring low-level deep-sleep current than the shunt resistor
method used for active periods. A high-quality DMM can
reliably measure mA level current value if it remains stable. The
DMM cannot be used to measure current consumption for
active periods because the current level is changing and does
not remain static.
The device used for themeasurements was a TektronixMSO

4104 mixed signal oscilloscope with a 1GHz measurement
bandwidth, and the probes used were TAP1500 active voltage
probes. The voltage in the battery connector of the board was
also measured separately using a Tektronix P6139A passive
voltage probe. The DMM used was a Tenma RS232C
TrueRMSmodel.

5. Measurement results

The measurements were carried out without implementing a
compression algorithm and with compression algorithms to see
whether the algorithm calculations have any effect on energy
consumption. The energy consumption for sensor
measurement and algorithm calculations was measured with all

Figure 1 Arduino MKRWAN 1310 in test setup

Figure 2 Current consumption measurement circuits
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algorithm combinations and without an algorithm.
Transmission energy consumption was measured using two
different payloads. If the measured raw or compressed value is
sent with a time stamp, only 8 bytes are needed to transmit.
This is the case without a compression algorithm or with the
LTC algorithm. With the RT-LRbTC algorithm, a total of
12bytes are transmitted because two line parameters (slope
and base) and a time stamp are needed to transmit.
Figure 3 presents the overall LoRa sensor node energy

consumption scenario over time. Number 1 in Figure 3
represents deep-sleep energy consumption (base consumption).
Number 2 represents the extra energy consumption of the sensor
measurement and data processing (with or without the
compression algorithm implemented). It occurs at regular
intervals that are determined by the measurement interval.
Number 3 represents the energy consumption of the LoRa
transmission. LoRa transmission is required after every
measurement event if no compression algorithm is implemented.
If a compression algorithm is implemented, LoRa transmission
does not occur after every measurement event. The deep-sleep
energy consumption is presented here as existing all the time, and
the measurement events and LoRa transmissions were presented
and measured as extra energy consumption on top of deep-sleep
base energy consumption. When the device is measuring or
transmitting, it is not in deep-sleep mode, but for measurement
purposes, this type of presentation is easier. In any case, the deep-
sleep power consumption is a fraction of the measurement event
and/or transmitting event power consumption.

5.1 Deep-sleep current consumption
The deep-sleep current consumption was measured without
implementing an algorithm, and the result was confirmed with
algorithms implemented. As the device was in deep-sleep mode,
there was no difference if the algorithm was implemented or not.
The device was set to go into deep-sleep mode between the
measurement periods. A similar setup was used by Väänänen and
Hämäläinen (2021), and the results obtained in this studywere in
same level. The measured deep-sleep current was 106–107mA.
When the device goes into deep-sleep mode, the current drops
immediately to 150–160mA, and after 10–20 s, it reaches
107 mA level. The voltage in the battery connector of the board
was measured with an oscilloscope at the same time. The battery
voltage was 3.99V in this case, thus resulting in deep-sleep power
consumption Pds = Vbattery·Ids = 3.99V � 117·10�6 A =
4.6683·10�4W=0.46683mW.

5.2 Sensormeasurement and algorithm energy
consumption
As the measurement interval is typically minutes, the sensor
node remains most of the time in deep-sleep mode, but it wakes
up with a regular basis to perform the measurement and
algorithm calculations. If the result from the algorithm

calculation is that there is no need to transmit any data, then the
device returns to the deep-sleep mode. The real-time clock
(RTC) runs even in deep-sleep mode and wakes the device up
on a regular basis, which is determined by the measurement
interval.
The energy consumed by the sensor measurement, and

possible algorithm was measured with the oscilloscope using a
shunt resistor, as explained in the measurement setup section.
The oscilloscope measurement results are shown in Figure 4.
Channels 2 and 3 (blue and purple lines on top of one another)
were used to measure the voltage difference across the shunt
resistor. Channel 4 (green line) measured the voltage in the
battery connector. The power line (red MATH-line in mW)
was calculated using the oscilloscope MATH-function from
Channels 2, 3 and 4 data: P =U � I = CH4 � ((CH2 – CH3)/
10). CH2-CH3 denotes the voltage across the shunt resistor.
10 is the resistor size in ohms. The oscilloscope measurement
function was used to calculate the MATH line area (integral),
which is the total energy consumed in the oscilloscope window
timescale (5.022 mWs during 2 s in Figure 4). Then, the
average value of the red MATH-line was measured before the
measurement event (device wake up) when the device was in
deep-sleep mode. The average deep-sleep value (average
power) was multiplied by the timescale used in the oscilloscope
screen (2 s in Figure 4) to obtain the base energy consumed,
which was subtracted from the total energy measured (5.022
mWs in Figure 4). Thus, additional energy consumption from
the sensormeasurement and data processing wasmeasured.
The same measurement was repeated a minimum of ten

times for each algorithm implemented as well as without the
algorithm implemented. The measurement results are listed in
Table 2. The average value was calculated from all
measurements using a certain algorithm (a minimum of ten
measurements with each algorithm).Max andMin values show
the maximum and minimum measured values, and Std Dev is
the standard deviation calculated from all the measured values
with the certain algorithm implemented. Last row presents
measurement results with current probe (Väänänen and
Hämäläinen, 2021). Figure 5 shows the average results with the
maximum, minimum and standard deviation values for each
algorithm.
It can be seen from the results presented in Table 2 and

Figure 5 that the effect of the algorithm on the measurement and
data acquisition event energy consumption is negligible. The
algorithms implemented and evaluated were computationally so
light that the possible effect on the energy consumption was
smaller than themeasurement inaccuracy.

5.3 LoRa transmission energy consumption
The scenario for the LoRa transmission energy consumption is
shown in Figure 6 (as a function of time). Number 1 in the
figure is the base energy consumption, which is the deep-sleep
energy consumption. Number 2 represents the sensor
measurement, data acquisition and algorithm energy
consumption in addition to base energy consumption. Number
3 is the LoRa transmission uplink, and number 4 is the LoRa
transmission downlink if received (in Figure 3, the uplink and
downlink energy consumptions are combined and presented by
number 3).

Figure 3 LoRa sensor node overall energy consumption scenario
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In this measurement setup, the overall energy consumption
was measured using the oscilloscope from the timescale that
was visible on the oscilloscope screen. The oscilloscope
MATH-function was used to calculate the overall power
(red MATH-line in Figures 7, 8 and 9) line in mW, and its
area (integral) was calculated using the oscilloscope
measurement function (in mWs). Then, the average base
power level was measured using the oscilloscope ZOOM
function from the time before the device wakes up (in deep-

sleep mode). The average power was used to calculate the
average base energy consumption at that timescale
(oscilloscope screen, 10 s in Figures 7, 8 and 9). This
average base energy (number 1 in Figure 6) was subtracted
from the overall measured energy consumption. This results

Figure 4 Sensor measurement and data processing energy consumption

Table 2 Sensor measurement and algorithm energy consumption with
and without algorithms implemented. Results are in mWs

No
compression

(mWs)

RT-LRbTC,
N = 3
(mWs)

RT-LRbTC,
N = 4
(mWs)

LTC
(mWs)

Max 5.05 5.24 5.22 5.30
Average 4.88 4.96 4.98 4.95
Std dev 0.11 0.18 0.16 0.16
Min 4.70 4.64 4.68 4.75
From current probe
measurement

4.57 4.78 4.83 4.78

Figure 5 Sensor measurement and possible algorithm overall energy
consumption
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in extra energy that the sensor, algorithm and LoRa
transmission add to the base energy consumption.
The sensor measurement and algorithm effect (Table 2,

which is number 2 in Figure 6) was then subtracted from the
measurement results, resulting in transmission-only energy
consumption. LoRa transmission energy consumption was
measured for 8 bytes (for LTC and no compression cases)
and 12 bytes (for RT-LRbTC cases) payload situations with
every SF (SF7-SF12). The DR can be adjusted in Arduino
MKRWAN 1310 by enabling ADR and setting a certain DR
value:
� modem.setADR(true); and
� modem.dataRate (0);//set data rate to be 0-5.

This needs to be done before every transmission period when
the radio wakes up. The total transmission energy consumption
for every SF case was measured a minimum of ten times, and
the average values are listed in Table 3.
The significant differences in energy consumption

depending on the SF used can be seen in Table 3. The
downlink was sent from the network side every time, even
though the ACK was not required, but quite often, it was not
received. If the downlink is not received, then the transmission
period energy consumption is lower, but that situation should
not be the normal case. If these values are used to predict the
device lifetime, the values with the downlink received should be
used as the worst case for the energy consumption.
The difference between the received and unreceived

downlinks can be seen in Figures 7 and 8. In Figure 8, the LoRa
radio opens two short receive windows after transmission. The
first receive window is approximately 1 s after the transmission,
and the second window is 1 s after the first window. In Figure 7,
the LoRa radio opens the first receive window 1 s after
transmitting, and in this case, the LoRa radio receives the
downlink message. The SF effect on the ToA is shown in
Figures 7, 8 and 9. In Figures 7 and 8 with SF12, the
transmission takes approximately 1,500ms, while with SF8 (in

Figure 6 LoRa node energy consumption scenario

Figure 7 Lora transmission (8 bytes) with uplink SF12 and downlink SF12
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Figure 9), it takes approximately 100–200ms. That explains
the significant difference in energy consumption.

6. Overall energy consumption and average
power consumption

The overall energy consumption of the LoRa sensor node is a
combination of deep-sleep consumption, measurement event
consumption, algorithm execution and possible LoRa
transmission. In this study, the sensor measurement event and
the algorithm execution were combined. The sensor
measurement and algorithm calculations (WM) take place on a
regular basis and are determined by the measurement interval
(Dt). The LoRa transmission event (energy consumed WS) is
determined by the measurement interval but also by the
compression ratio (CR) that the algorithm achieves. The overall
energy consumed during time tx can be estimated using
equation (2):

Wtot ¼ Pdstx 1
tx
Dt

WM 1
tx

CR� Dt
Ws (2)

where Pdstx is the energy consumed by the device in the deep-
sleep mode during time tx. tx/Dt is the number of measurement

periods. tx/(CR � Dt) is the number of transmission periods. It
can be seen from the equation that it is possible to minimize the
overall energy consumption either by lengthening the
measurement interval or using a compression algorithm, which
results in a high compression ratio for the measured data
stream. Other possibilities would require different hardware
solutions.
If the total available energy is known (battery capacity for

example), then the overall lifetime can be solved from
equation (2):

tx ¼ WToT

Pds 1
WM
Dt 1 WS

CR�Dt
(3)

The average power consumption can be derived from
equation (2) by dividing by time tx as P =W/t. Resulting in
equation (4):

Pavg ¼ Pds 1
WM

Dt
1

WS

CR � Dt (4)

The DHT22 temperature sensor has an accuracy of 60.5°C.
Thus, it was reasonable to use the error bound value « = 0.5°C for
the compression algorithms. Väänänen and Hämäläinen (2020)

Figure 8 LoRa transmission (8 bytes) with uplink SF12 and downlink not received
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tested the LTC and RT-LRbTC algorithms for real temperature
data sets with a 10-min measurement interval. Temperature data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets usedwere 2018 and 2019 full-year
data from the Salla Naruska measurement station. The
temperature data were measured in degrees Celsius, with a

resolution of 0.1°. With « = 0.5°C, the compression algorithms
achieved compression ratios of CR = 9.5–10.2 with LTC and
CR=5.5–6.0withRT-LRbTC (N=3).
Table 4 lists the average power consumption for different

compression algorithms with different SF scenarios. The
measurement interval was 10min (Dt = 600 s). The values in

Figure 9 LoRa transmission (8 bytes) with uplink SF8 and downlink SF10

Table 3 LoRa Transmission energy consumption with different SFs and two different payloads. Results are in mWs

8 bytes (mWs) 12 bytes (mWs)

Uplink SF12, downlink SF12 248.89 257.82
Uplink SF12, downlink SF9 (downlink not received) 201.02 212.32
Uplink SF11, downlink SF12 163.93 162.73
Uplink SF11, downlink SF9 (downlink not received) 119.63 120.12
Uplink SF10, downlink SF12 104.41 107.60
Uplink SF10, downlink SF9 (downlink not received) 65.28 68.03
Uplink SF9, downlink SF11 59.55 58.60
Uplink SF9, downlink SF9 (downlink not received) 41.01 42.50
Uplink SF8, downlink SF10 32.54 33.26
Uplink SF8, downlink SF9 (downlink not received) 27.89 28.78
Uplink SF7, downlink SF9 18.11 19.09
Uplink SF7, downlink SF9 (downlink not received) 13.99 No data
Uplink SF7, downlink SF9 (downlink received in second window) 20.32 No data
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Table 4 were calculated using equation (4) from the
measured values from Tables 2 and 3 (8 bytes results for
LTC and no compression, 12 bytes results for RT-LRbTC
algorithms). The compression ratios were CR = 10 for LTC
and CR = 6 for both RT-LRbTC algorithms, which are
realistic values and were achieved by Väänänen and
Hämäläinen (2020).
There were no significant differences in the power

consumption values between the algorithms tested. The
differences were larger for high SF values when the effective
compression algorithm can achieve energy savings by reducing
the number of LoRa transmission periods. LoRa transmission

periods are significant energy consumers, particularly if the
used SF is high. With high SF values, the compression
algorithms used were very effective for reducing energy
consumption. This is clearly shown in Figure 10 (from
Table 4).
The battery used in this experiment was a 2,000 mAh

LiPo battery with 3.7 V nominal voltage. Its overall capacity
is 7.4Wh, which is 26,640 Ws. This capacity is the nominal
capacity in the optimal situation. For example, in cold
weather, the capacity of lithium-based batteries significantly
collapses (Li et al., 2017). Aging also affects the battery
capacity.

Table 4 Average power consumption with different algorithms implemented and with certain compression ratios. Results are in mW

No compression
(mW)

RT_LRbTC, N = 3
(mW)

RT_LRbTC, N = 4
(mW)

LTC
(mW)

Uplink SF12, downlink SF12 0.898 0.548 0.548 0.517
Uplink SF12, downlink SF9 (downlink not received) 0.818 0.535 0.535 0.509
Uplink SF11, downlink SF12 0.756 0.522 0.522 0.503
Uplink SF11, downlink SF9 (downlink not received) 0.682 0.510 0.510 0.496
Uplink SF10, downlink SF12 0.657 0.506 0.506 0.493
Uplink SF10, downlink SF9 (downlink not received) 0.592 0.495 0.495 0.487
Uplink SF9, downlink SF11 0.582 0.493 0.493 0.486
Uplink SF9, downlink SF9 (downlink not received) 0.551 0.488 0.488 0.483
Uplink SF8, downlink SF10 0.537 0.486 0.486 0.481
Uplink SF8, downlink SF9 (downlink not received) 0.530 0.484 0.484 0.481
Uplink SF7, downlink SF9 0.513 0.482 0.482 0.479
Uplink SF7, downlink SF9 (downlink not received) 0.506 – – 0.478
Uplink SF7, downlink SF9 (downlink received in second window) 0.517 – – 0.479

Figure 10 LoRa node power consumption with different SF values
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The battery lifetime was calculated using equation (3) in the
case where full capacity was available. The values used were
WTOT = 26,640 Ws and Pds = 4.6683·10�4 W. WM and WS

values were from the Tables 2 and 3. CR values of 10 for LTC
and 6 for RT-LRbTC. The battery lifetimes in days for
different algorithms and SF scenarios are listed in Table 5. RT-
LRbTC withN = 4 is not presented here because its results are
very close to RT-LRbTCwithN= 3.
As can be seen from Table 5, it is easy to achieve over an 18-

month lifetime if the RT-LRbTC algorithm is used (with a 0.5°
error bound). Without implementing a compression algorithm,
it is possible to have less than a 12-month lifetime if the device
is located at a long distance from the base station, or if there are
obstacles between the device and base station (thus using a high
SF value). In a good network coverage situation, the difference
is small between the compression algorithm used or without
compression algorithm implemented. Generally, the deep-
sleep current consumption of 107 mA is rather high for a
modern microcontroller-based LoRa node, and it determines
the overall lifetime.
In research by Väänänen and Hämäläinen (2021), the DR

was not fixed, and instead, the ADR was used. Thus, in that
case, the LoRa node was always transmitting with SF10, and in
approximately 50% of the transmitting periods, the downlink
was received (SF12). The average transmission energy
consumption was measured and calculated to be 91.47 mWs.
Using this value, the battery lifetime was calculated to be
approximately 490days if no compression algorithm was
implemented, 630days if the LTC algorithm was used and
616days if the RT-LRbTC algorithm was used. This case is
valid in that situation; however, in some other circumstances,
the LoRa node may use other SF values, and its effect on the
lifetime can be estimated by the results presented in Table 5.

7. Conclusions

From the results achieved in this study, the LoRa DR has a
significant effect on the overall power consumption of the LoRa
sensor node, especially if no compression algorithm is used.
However, normally it is not possible to control the DR because
the ADR adjusts the optimal SF value. If the base station is very
far away, then a high SF must be used to achieve that long
range, resulting in higher power consumption.

Simple temporal compression algorithms are very effective for
reducing the overall energy consumption of the LoRa sensor
node if the reconstruction error, determined by the error
bound, is acceptable. From the results achieved in this study,
the algorithm calculations did not have a significant effect on
energy consumption. Nevertheless, these algorithms can
significantly reduce the number of LoRa transmission periods
and thus achieve significant energy consumption savings. The
overall reduction in energy consumption was due to the
reduced number of radio transmission periods. The LTC
algorithm is very effective and simple algorithm, but its
unpredictable latency is not well suited for online applications
with latency requirements. RT-LRbTC is not as effective
compression algorithm, and it is a bit more complicated, but
with predictable latency, it is well suited for compressing
environmental data in the online mode. In this research, the
measurement interval was rather long, and thus, the LoRa node
deep-sleep consumption became a significant factor
determining the device lifetime.
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Abstract— Environmental monitoring is a typical Internet of 
Things (IoT) application. Environmental monitoring plays a 
significant role, for example, in smart farming and smart city 
applications. Environmental magnitudes are usually measured 
using wireless sensor nodes, which are often battery-powered, 
and the number of sensing nodes can be large. One effective 
method for reducing the energy consumption of a sensor node is 
to use data compression to reduce the amount of data required 
for transmission via a wireless connection. Compressing the 
sensor data means fewer transmission periods, and thus, lower 
energy consumption. Compression methods should be effective 
for compressing environmental magnitudes and be 
computationally light to be suitable for constrained sensor 
nodes. A compression algorithm should be able to compress an 
online data stream. In this paper, we review some compression 
algorithms suitable for environmental monitoring and present 
two new versions of those algorithms. The algorithms were 
evaluated, tested, and compared. The main parameters used for 
the comparisons were compression ratio, root mean square 
error, and inherent latency. The simulation results obtained 
using real datasets demonstrate that simple linearity-based 
compression algorithms are effective and suitable for 
compressing environmental data. Two new compression 
algorithm versions proved to be effective for compressing sensor 
data with reasonable compression quality and predictable 
inherent latency. 

Keywords—compression algorithm, data compression, edge 
computing, Internet of Things, sensor data 

I. INTRODUCTION 
In environmental monitoring the wireless sensor nodes can 

be located in wide area and the number of nodes can be large. 
Wireless sensor nodes are often battery powered and replacing 
empty batteries can be costly, as the nodes may be located in 
a wide area and thus require manpower to complete the 
replacement. Thus, minimizing the energy consumption and 
lengthening the lifetime of the sensor node can be a cost-
effective solution. Compressing the sensor data stream in 
online mode can reduce the transmission periods needed via 
wireless connection. Wireless transmission is known to be the 
most energy consuming operation in wireless sensor node. 
Between sensing and transmission phases the node can be in 
sleep mode. 

In this paper, some basic linearity-based compression 
algorithms are presented, and two new versions are developed 
and evaluated. The algorithms are compared to each other by 
compression ratio, root mean square error and algorithm 
inherent latency. The remainder of this paper is organized as 
follows: present algorithms are presented in Section II. New 
algorithm versions are presented in Section III. Compression 
algorithms inherent latency considerations are in Section IV. 
Algorithms’ ability to compress environmental datasets is in 
Section V. Section VI is the summary of the results and finally 
section VII presents the conclusions. 

II. LINEARITY-BASED TEMPORAL COMPRESSION 
METHODS FOR SENSOR DATA 

A. Linear Regression based Temporal Compression 
Linear Regression based Temporal Compression 

(LRbTC) algorithm is based on basic linear regression and it 
is designed to compress the sensor data in online mode. Thus, 
the dataset is not already available, but as a function of time, 
the new data values come in sequence with constant 
frequency, and the LRbTC algorithm compresses the data 
value by value [1]. The algorithm waits until the first N 
measurement values are available and then the regression line 
described by the N values is calculated. These N values are 
expected to predict the future values of the sensor data. If the 
data behave linearly, then the regression line can predict the 
consecutive measurement values with a certain error bound (ε) 
allowed. N has a minimum of three values, but four and five 
values were also tested in [1]. 

Calculating the linear regression of N values yields the 
linear line that best fits the N values used. The calculation of 
the regression line is based on the least-squares method, which 
minimizes the sum of squares of the deviation between data 
points. After calculating the regression line of the first N 
measured values, the algorithm stores and/or sends the starting 
point of the regression line. The inherent latency of the 
algorithm is (N-1)Δt at this point when the regression line is 
calculated. Then when a new measured value is achieved after 
one measurement interval (Δt), the algorithm compares the 
value to the regression line value at that timestamp. If the 
value is within one error bound from the line, the algorithm 
waits for the next measured value and makes a new 
comparison. When the new measured value falls off from the 
regression line prediction (differs more than one error bound 
from the line), the algorithm stores and/or sends the linear 
regression line value in one timestamp before (last timestamp 
when the measured value was still within one error bound 
from the line) as an end point of the linear segment. Then the 
algorithm waits for N-1 new measured values (because one 
value is already available; the one that was in more than one 
error-bound distance from the line and ended the linear 
segment). After calculating the new regression line, the 
algorithm stores and/or sends the new regression line starting 
point. 

The weakness of this basic form of LRbTC is the 
possibility that the values used to calculate the regression line 
may differ more than one error bound (ε) from the regression 
line. Thus, the values derived from the compressed dataset 
may differ more than one error bound from the original values 
and therefore the error bound requirement is not guaranteed 
[1]. A modified version was developed to solve the 
aforementioned weakness in the basic version. The modified 
LRbTC (M-LRbTC) is analogous to LRbTC, except that the 
comparison between the raw values and regression line is also 
made for the values used to calculate the regression line [1]. If 



the difference between the calculated regression line and the 
raw value or values is larger than the error bound, then the first 
two raw values are retained (stored/sent), and a new regression 
line is calculated when the next two new values are available. 
The algorithm works if N = 3 or more [1],[2]. 

The output of the algorithm can be presented as a 
compressed dataset, M-LRbTC(S) = <(c1, τ1), (c2, τ2),…, (ck, 
τk)>. The compressed data values (ci, τi) are either the starting 
points or end points of the linear segments, or the raw data 
values if the difference has been too big between the line and 
the raw values that were used to calculate the line. 

One drawback of M-LRbTC (and in basic LRbTC) is that 
two data pairs are required for each linear segment; starting 
point and end point. Another drawback of this algorithm is the 
inherent latency. Latency is predicted when the new 
regression line is calculated, and it is determined by N. After 
the regression line is calculated, the latency is not known and 
is not predictable. The better the regression line predicts future 
values, the longer is the latency. The drawback of 
unpredictable latency can be overcome by sending the 
regression line parameters a (slope) and b (base) with the line 
starting point timestamp. Thus, in this case, the compressed 
data can be represented as LRbTC(S) = 
<(a1,b1,τ1),(c2,τ2),(a3,b3,τ3),(c4,τ4),…,(ak-1,bk-1,τk-1),(ck,τk)>. The 
latency in this version is the N–1 measurement intervals when 
calculating the regression line. When the line parameters are 
sent, the receiver knows that the values follow the line with 
one measurement interval latency until the line-end 
parameters (ci and τi) are received [2]. 

B. Real-Time Linear Regression Based Temporal 
Compression 
RT-LRbTC was presented in [2] as a modification of M-

LRbTC to achieve a predictable and shorter inherent latency. 
RT-LRbTC uses already available sensor values to calculate a 
new regression line. Thus, the inherent latency is only one 
measurement interval, Δt. A flowchart of the RT-LRbTC is 
presented in Fig. 1. Initially, the algorithm works as an M-
LRbTC, and the inherent latency is N–1 measurement 
intervals long, which is (N-1)Δt. In step 6, the algorithm stores 
and/or sends the regression line parameters and the timestamp 
of the regression line starting point instead of the line starting 
point value. In step 7, when the algorithm is in the linear 
section, the inherent latency is one measurement interval (Δt). 
If the difference in step 8 is larger than the error bound 
allowed, the new regression line is calculated in step 9, but the 
line is calculated using the already available values. The 
compressed dataset is presented as RT-LRbTC(S) = <(a1,b1,τ1), 
(a2,b2,τ2),…, (ak,bk,τk)>, where ai and bi are the regression line 
parameters and τi is the line beginning timestamp. When the 
new line parameters with the timestamp are received, it is 
known that the previous line ended one measurement interval 
earlier. Thus, the inherent latency of the algorithm was 
described by the measurement frequency [2]. 

The compression efficiency is dependent on the data 
characteristics, and in most cases, RT-LRbTC has a lower 
inherent compression ratio (CR) than M-LRbTC [2]. As RT-
LRbTC generally has a lower CR, it means that there are more 
linear regression lines after compression with RT-LRbTC 
than with M-LRbTC. An advantage of RT-LRbTC is that the 
line parameters must be sent only once for each linear section, 
thus resulting in a better compression ratio compared to M-
LRbTC [2]. In the basic version of M-LRbTC, the starting and 

endpoint values with timestamps need to be sent for each 
linear segment. RT-LRbTC benefits from the fact that, 
compared to (N-1)Δt latency with M-LRbTC, there is no 
inherent latency when the new regression line is calculated. 

Fig. 1. RT-LRbTC flowchart 

C. Lightweight Temporal Compression 
LTC is a well-known and simple compression algorithm. 

It was first presented in [3], but a similar algorithm, called Fan, 
was actually presented before in [4] for electrocardiogram 
(ECG) data. LTC is a very effective compression algorithm, 
especially for environmental data that behave rather linearly 
when the observation time window is short. The compression 
ratio depends on the data characteristics and error bound used. 
LTC can achieve a compression ratio as high as 20 when 
compressing the environmental temperature data with a 10-
minute measurement interval and 1.0 °C error bound [1]. 

The LTC has an unpredictable latency and is dependent on 
each linear section length. Thus, the higher the CR, the longer 
the latency. If the data behave very linearly, a long latency is 
derived. When the new linear segment starts, the starting point 
is known, but the direction of the following values remains 
unknown until the linear segment ends, and the end point is 
stored in the compressed dataset. Due to unpredictable 
latency, LTC is not suited for real-time applications. In this 
study, LTC has been used as a comparison for the other 
algorithms. 

Some slight variations of the original LTC algorithm have 
been developed. In [5], a modification of the LTC algorithm 
was used. Other variations include Adaptive Lightweight 
Temporal Compression [6], Refined Lightweight Temporal 
Compression (RLTC) [7], multidimensional extension of the 
LTC method [8], Direct Lightweight Temporal Compression 
(DLTC) [9] and DFan [10]. These modified versions were 
developed either to minimize the data reconstruction error or 
improve the compression efficiency. 

 



III. NEW VERSIONS OF THE RT-LRBTC ALGORITHM 
In this study, two new versions of the RT-LRbTC 

algorithm were developed. One variation of the basic RT-
LRbTC is the RT-LRbTC with 2Δt inherent latency in the new 
regression line calculation (RT-LRbTC-2Δt). This version is 
the same as the basic RT-LRbTC (with N = 3), but the values 
used to calculate the new regression line are the last point in 
the previous linear section, the first value that fell off from the 
previous section, and one new measurement value. The need 
to wait for one new value adds the inherent latency to 2Δt 
when the information of the previous line ends, and new line 
parameters are obtained. In Fig. 1, this means that in step 9, 
there is a need to wait for one measurement interval and then 
calculate the new regression line from the last three values. 
This new version is a compromise between M-LRbTC and 
RT-LRbTC; having the inherent latency between those two 
algorithms. 

Another variation of the basic RT-LRbTC and RT-
LRbTC-2Δt is the use of weighted linear regression instead of 
ordinary linear regression. This version of the algorithm is 
called RT-WLRbTC (Real-Time Weighted Linear 
Regression-based Temporal Compression) with 2Δt inherent 
latency (RT-WLRbTC-2Δt). Weighted linear regression (or 
weighted least-squares, WLS) is used in statistics and data 
analysis instead of simple linear regression when the variation 
in the samples (values) is not constant. This heterogeneous 
nature of the values can be addressed by WLS using 
heterogeneous weights wi in the normal linear regression 
equations [11]. The sum of squares of the deviation with 
weights is [12]: 

  𝑆𝑆𝑤𝑤 = ∑ 𝑤𝑤𝑖𝑖[𝑦𝑦𝑖𝑖 − (𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏)]2𝑛𝑛
𝑖𝑖=1   (1) 

The WLS estimates of a and b (line parameters) were 
obtained by minimizing (1). In this study, the idea of WLS is 
utilized as some of the samples are used more than once while 
calculating the linear regression to give more weight to a 
specific individual value (single values used twice means 
double weight). RT-WLRbTC-2Δt is similar to RT-LRbTC-
2Δt, except that the last value used to calculate the linear 
regression line is used twice, thus having a weight value of 2 
compared to 1 for the other two values. Hence, the 
computational complexity is similar to that of the M-LRbTC 
with N = 4. The main idea behind using this type of weighted 
linear regression is that when the linear section ends and the 
new regression line is calculated, it is expected that the 
direction of the values is changing. Thus, the latest value is 
expected to predict future values better than other values used 
to calculate the regression line, and thus the latest value has a 
larger effect on the linear regression line calculation. Different 
versions of weighted linear regression can be developed and 
used; however, only this one example was tested in this study. 

IV. TEMPORAL COMPRESSION METHODS’ INHERENT 
LATENCY 

In Table I, all the presented methods are compared in the 
order of the algorithm’s inherent latency. This comparison 
does not consider the latency caused by the computational 
time. Because the measurement interval in typical 
environmental applications is rather long (minutes or even 
hours in some cases), the time needed for calculations is 
negligible, even with the most constrained end devices. 

LTC and M-LRbTC (basic version) are not well suited for 
compressing sensor data value by value in the online mode. 
LTC has unpredictable inherent latency, which is dependent 
on how well the values fit in the linear section. When the linear 
section ends, the endpoint and the new linear section starting 
point are at the same point. That information is achieved in 
one measurement interval after the linear section ends. The 
basic version of the M-LRbTC has an inherent latency of (N-
1)Δt in the beginning, when the algorithm waits until there are 
N measurement values to be used to calculate the regression 
line. The starting point line value is stored and/or sent, but it 
is not known in which direction the values are moving since 
this until the line ends and the end point value is stored and/or 
sent. If the linear regression line parameters are sent, then the 
inherent latency is constant Δt in the linear section. Only M-
LRbTCb (Table I) and the three RT-LRbTC-based algorithms 
have fixed and predictable latencies. Of the presented 
algorithms, RT-LRbTC has the shortest overall latency, Δt, in 
the linear section, and no latency in calculating a new line. The 
new versions have double inherent latency (2Δt) and no 
latency in calculating a new regression line.  

V. LINEARITY-BASED METHODS’ COMPRESSION 
QUALITY AND ABILITY TO COMPRESS ENVIRONMENTAL 

DATASETS 
It was demonstrated in [13] that the average absolute 

change between consecutive measurements (AC) can be used 
to predict the selected linearity-based algorithm’s ability to 
compress datasets (compression ratio, CR). AC is defined as: 

  𝐴𝐴𝐴𝐴 = ∑ |𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖|
𝑛𝑛−1
𝑖𝑖=1

𝑛𝑛−1
   (2) 

Additionally, the standard deviation (SD) of the change 
between consecutive measurements can also be used to predict 
the CR, but the AC provides a better estimation [13]. SD is 
defined as (3): 

 𝑆𝑆𝑆𝑆 = �∑ �(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)−(𝑥𝑥𝚤𝚤+1−𝑥𝑥𝚤𝚤������������)�
2𝑛𝑛−1

𝑖𝑖=1
𝑛𝑛−2

   (3) 

where, 

 (𝑥𝑥𝚤𝚤+1 − 𝑥𝑥𝚤𝚤�����������) = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1    (4)

TABLE I.  COMPRESSION ALGORITHMS’ LATENCIES IN DIFFERENT PHASES OF COMPRESSION 

Phase of the 
Compression 

Compression Algorithm 

LTC M-LRbTCa M-LRbTCb RT-LRbTC RT-LRbTC-2Δt RT-WLRbTC-2Δt 

At the beginning 0 (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt (N-1)Δt 

In linear section Length of the 
linear section 

Length of the 
linear section Δt Δt 2Δt 2Δt 

Calculating new line NA (N-1)Δt (N-1)Δt 0 0 0 
aM-LRbTC: The linear regression line start and endpoint values are sent. 
bM-LRbTC: The linear regression line parameters are sent with the starting timestamp. The endpoint of the linear line is sent when the first value falls off from the linear segment. 
 



The suitability of a compression algorithm depends on the 
characteristics of the sensor data. Many environmental 
magnitudes are quasi-linear in a short time window, and some 
compression algorithms are more suitable and effective for 
this type of linearly behaving data than for other types of data. 
In this study, the AC and SD values of the datasets were used 
to compare the datasets’ characteristics and to estimate the 
compression algorithms’ ability to compress those datasets 
effectively. 

The common parameters used to compare different 
compression algorithms are the compression ratio (CR) and 
the root mean square error (RMSE). The compression ratio is 
calculated as CR = (original data)/(compressed data) and the 
root mean square error [14]: 

 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝑛𝑛
∑ (𝑣𝑣𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1    (5) 

where vi is the raw data value and ci is the corresponding 
value derived from the compressed dataset. The compression 
ratio indicates how effectively the algorithm reduces the size 
of the original data and is most widely used to express the 
efficiency of the compression algorithm. The RMSE indicates 
the compression quality. Because the methods presented in 
this paper are lossy, the reconstructed data differ from the 
original data. Thus, some information is lost. The RMSE 
provides information about how much the data reconstructed 
from the compressed data differs from the original data. The 
smaller the RMSE value, the smaller is the deviation from the 
original data. 

A. The Selected Compression Algorithms’ Efficiency to 
Compress Real Environmental Datasets 
LTC, M-LRbTC, and three versions of RT-LRbTC 

algorithms were tested with real datasets and compared with 
each other. All tested algorithms are suitable for constrained 
IoT devices. In [15] and [16], LTC and RT-LRbTC (with N 
values 3 and 4) were implemented on a LoRa sensor node and 
no significant energy consumption from the algorithm 
calculations was discovered. It was discovered that using these 
lossy compression algorithms led to significant reduction on 
energy consumption and thus it can be effective solution for 
lengthening the battery powered sensor node lifetime. The 
energy saving was due to reduction of the wireless 
transmitting periods [15], [16].  

In this study, the M-LRbTC algorithm was tested using N 
values of 3, 4, and 5. The RT-LRbTC algorithm was tested 
with the original version and two newly developed versions: 
RT-LRbTC-2Δt and RT-WLRbTC-2Δt. All algorithms were 
programmed and tested using MATLAB. The datasets were 
already available, and thus, this situation does not correspond 
to the situation for compressing the real-time sensor data 
stream. This testing situation demonstrates how the algorithm 
would have compressed the data when the dataset was 
collected. As the temperature at the same geological location 
behaves rather similarly year by year, this testing indicates 
how the algorithm could possibly compress the data in that 
situation. Similar behavior at certain geological locations for 
other environmental magnitudes is also expected. 

The environmental magnitudes were temperature, air 
pressure and wind speed. The datasets used were obtained 
from the Finnish Meteorological Institute’s open data service 
[17]. The datasets tested were Salla Naruska measurement 
station data and Hanko Tulliniemi measurement station data. 

All datasets were for the full year 2019 with 10-minute 
measurement intervals. The temperature was measured in 
degrees Celsius with 0.1 degrees resolution, air pressure was 
measured in hPa with 0.1 hPa resolution and wind speed was 
measured in 10-minute average value with 0.1 m/s resolution. 

The Salla Naruska measurement station is in the eastern 
part of Finnish Lapland. It is one of the coldest locations in 
Finland. The Hanko Tulliniemi measurement station is in the 
southernmost part of Finland, 100 m from the sea. These two 
locations have very different climates. The Salla Naruska 
dataset was also used in [2] but the Hanko Tulliniemi dataset 
is a new experiment. In [2] LTC, M-LRbTC, and RT-LRbTC 
compression ratios with different error bound values were 
tested using the Salla Naruska dataset (temperature, air 
pressure, and wind speed). In this study, the same compression 
ratio simulations for the Salla Naruska datasets were repeated, 
but the RT-LRbTC algorithm’s MATLAB version was further 
developed to give the CR value calculated as only line 
parameters are needed for each linear section and possible 
single values (not included in any linear segment) were taken 
into account. In [2] the same situation was achieved by 
doubling the CR values achieved from the compressed 
datasets, which included the start and end points of the linear 
segments. The method in [2] gives the same values for CR 
when the CR is high but gives erroneous results if the 
compressed dataset also includes single values that do not 
belong to linear segments. In this study, the RMSE values for 
each algorithm were calculated using different error-bound 
values. In addition, the CR and RMSE values were compared, 
and two new algorithms were tested for each environmental 
dataset.   

1) Temperature Datasets 
The Salla Naruska dataset contains 52 463 values and the 

Hanko Tulliniemi dataset 51 961 measurement values with 
10-minute measurement intervals. For the full year, the dataset 
should contain 52 560 values but both datasets have some 
periods with missing values. The individual missing values 
and short periods with missing values in the original datasets 
were linearly interpolated. Longer periods with missing values 
were removed from the dataset. The temperature values in the 
Salla Naruska dataset varied between -37.2 °C and +30 °C. 
The temperature values in the Hanko Tulliniemi dataset varied 
between -12.3 °C and +27.6 °C. 

Table II presents a comparison between these two 
temperature datasets. Both the AC and SD values were higher 
for the Salla Naruska temperature dataset than for the Hanko 
Tulliniemi dataset. It indicates a lower compression ratio for 
Salla Naruska dataset. 

TABLE II.  TEMPERATURE DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.2077 0.1282 

Standard deviation (SD) 0.3473 0.2221 

 

The results achieved in [13] can be used to estimate the 
compression ratios with error bound of 0.5 °C for the LTC and 
M-LRbTC algorithms when the AC and SD values are known. 
With AC values from Table II the estimation gives CR = 10.4 
(Salla Naruska dataset) and CR = 15.8 (Hanko Tulliniemi 
dataset) for LTC when the error bound is 0.5 °C. The real CR 



values achieved in this paper were 10.2 and 14.1 respectively. 
For M-LRbTC (N = 3) the estimation gives CR values 4.0 and 
5.8 compared to the results achieved here which are 4.0 and 
5.4 respectively. The estimations from [13] are close to the 
real compression ratios achieved in this study. 

Fig. 2 shows the performance results of the different 
compression algorithms. Fig. 2 (a) and (b) show the 
compression ratios as a function of error bound (from 0.1 to 
1.0 degrees Celsius). The LTC has a superior compression 
ratio compared to the linear regression-based algorithms. The 
difference between the different linear-regression-based 
algorithms is not very large. The compression performance 
difference between M-LRbTC N = 3 and N = 4 was slightly 
larger than that between N = 4 and N = 5. RT-LRbTC has the 
lowest compression ratio in terms of linear lines (start and end 
points), but it benefits from the fact that only one transmission 
period is required for each linear line. In Fig. 2 (a) and (b), for 
different RT-LRbTC (RT-LRbTC, RT-LRbTC-2Δt, and RT-
WLRbTC-2Δt) algorithms, the compression ratio values are 
presented as only the line parameters are stored/sent at the 
beginning of each linear line. 

The new variations in RT-LRbTC (RT-LRbTC-2Δt and 
RT-WLRbTC-2Δt) have a slightly better compression 
performance than the basic RT-LRbTC. This can be observed 
in Fig. 2 (a) and (b) for the compression ratio. In general, all 
the tested compression algorithms performed better for the 
Hanko Tulliniemi dataset than for the Salla Naruska dataset, 
as indicated by the AC and SD values in Table II. A typical 
error bound for temperature data in many applications can be 

approximately ± 0.5 degrees Celsius. One possibility to 
choose the error bound is to use the margin of error of the 
temperature sensor, which can be found in the sensor’s data 
sheet [3]. 

In Fig. 2 (c) and (d) the RMSE values with different error 
bounds can be seen.  The LTC has the largest RMSE values, 
which means that the drawback of a better compression ratio 
is lower compression quality. Among linear-regression-based 
methods, the results are similar between them. As RT-LRbTC 
has a higher compression ratio, it also has a lower compression 
quality than the M-LRbTC methods. The advantage of RT-
LRbTC is its shorter latency and moderate compression ratio, 
but its drawback is the larger average reconstruction error after 
compression than that of M-LRbTC. 

The compression quality measurements (RMSE) are 
similar level with all linear regression-based algorithms, as 
can be seen in Fig. 2 (c) and (d). RT-WLRbTC-2Δt does not 
show any better performance than RT-LRbTC-2Δt in any 
measurements for these temperature datasets. In Fig. 2 (e) and 
(f), the RMSE values are compared in terms of the 
compression ratio. In this comparison, the LTC has the best 
performance, even though the previous comparisons in (c) and 
(d) indicate a lower compression quality. The LTC benefits 
from its superior compression ratio compared to the other 
tested methods. 

2) Air Pressure Datasets 
The same algorithms were tested for the air pressure 

datasets. The datasets are listed in Table III. The 
characteristics of both datasets were very similar, indicating

Fig. 2. Compression algorithms’ performance for temperature datasets 

 



very similar behavior for both datasets. There was only a small 
difference between the AC and SD values. The air pressure 
values in the Salla Naruska dataset varied between 967.2 hPa 
and 1039.5 hPa. In Hanko Tulliniemi dataset the values were 
between 970.5 hPa and 1043.1 hPa. 

TABLE III.  AIR PRESSURE DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.0856 0.0836 

Standard deviation (SD) 0.1234 0.1249 

 

In Fig. 3, all the results for compressing the two tested air 
pressure datasets are shown. Both datasets are full-year 
datasets with 10-minute measurement intervals. 

As shown in Fig. 3 (a) and (b), the compression ratios were 
significantly higher than for the temperature data (Fig. 2). 
These are not directly comparable, but as both magnitudes are 
measured with 0.1 (degree and hPa) resolution, the error 
bounds of 0.1 – 1.0 can thus be compared to each other 
sufficiently. In general, the air pressure data changes rather 
slowly; thus, it is well suited for linearity-based compression 
algorithms. The AC and SD values in Table III are 
significantly lower than those for the temperature datasets in 
Table II, thus indicating better compression performance. 
From the results obtained in [13] it is possible to estimate the 
compression ratios for the LTC and M-LRbTC algorithms. 
The data from [13] estimated the compression ratio with 0.5 

hPa error bound for LTC to be 27.9 for the Salla Naruska 
dataset and 28.3 for the Hanko Tulliniemi dataset. The results 
from MATLAB simulations provided CR values 29.6 for the 
Salla Naruska dataset and 29.8 for the Hanko Tulliniemi 
dataset. These results are very close to the estimations. 

The results for RT-LRbTC-2Δt and RT-WLRbTC-2Δt 
were very close to the RT-LRbTC values in terms of the 
compression ratio (Fig. 3 (a) and (b)). All linear regression-
based algorithms are very close to each other in terms of the 
quality metrics (RMSE), as can be seen in Fig. 3 (c) and (d). 
Again, the LTC has a superior compression ratio but also the 
largest average construction error. The difference between the 
various linear regression-based algorithms is small in terms of 
the quality metrics and compression ratio. The three different 
RT-LRbTC algorithms presented the best compression 
performance among the linear regression-based algorithms. In 
Fig. 3 (e) and (f), the RMSE values of the different algorithms 
are compared in terms of compression ratio. The performance 
order between the algorithms is quite similar to that of the 
temperature data, as seen previously. 

3) Wind Speed Datasets 
The two wind speed datasets have different characteristics. 

As the measurement stations are located in very different 
places, one close to the sea and the other in Lapland in the 
lowland, the wind conditions are different. The AC and SD 
values are listed in Table IV. The AC and SD values were 
higher for the Hanko Tulliniemi dataset, which indicates 
lower compression ratios for that dataset. The wind speed was 
measured as 10-minute average values. Otherwise, the wind 
speed is gusty if measured in instantaneous values, and thus, 

Fig. 3. Compression algorithms’ performance for air pressure datasets 

 



it does not exhibit linear behavior. The values in the Salla 
Naruska dataset were 0 m/s - 9.3 m/s. The values in the Hanko 
Tulliniemi dataset were 0 m/s - 21.8 m/s. 

TABLE IV.  WIND SPEED DATASETS 

 Salla Naruska Hanko Tulliniemi 
Number of values 52 463 51 961 

Average change (AC) 0.2844 0.4188 

Standard deviation (SD) 0.4125 0.5917 

 

The compression ratios for the Salla Naruska dataset are 
significantly higher than those for the Hanko Tulliniemi 
dataset, as can be seen in Fig. 4 (a) and (b). For example, LTC 
with error bound 0.5 m/s achieves CR = 5.54 for Salla Naruska 
dataset and CR = 3.98 for Hanko Tulliniemi dataset. The 
estimations obtained from the data in [13] provide the 
compression ratio estimations of 5.5 for the Salla Naruska 
dataset and 3.6 for Hanko Tulliniemi dataset for LTC with the 
same error bound. These estimations were close to the actual 
compression ratios achieved. The estimations for M-LRbTC, 
N = 3 give CR = 2.7 for Salla Naruska data and CR = 2.1 for 
Hanko Tulliniemi data. The MATLAB simulation yielded the 
same values. The compression ratios are clearly higher for the 
Salla Naruska dataset than for the Hanko Tulliniemi dataset, 
as indicated by the AC and SD values of the datasets. RT-
LRbTC-2Δt and RT-WLRbTC-2Δt exhibited the higher CR 
values compared with the other linear regression-based 
methods. 

The RMSE results are shown in Fig. 4 (c) and (d). The 
performance results with these quality measurements were at 
the same level for each linear-regression-based method. The 

differences were very limited. LTC has a significantly lower 
compression quality (higher RMSE), as can be seen in Fig. 4 
(c) and (d). The different characteristics of the datasets did not 
appear to affect the quality metrics. The RMSE results were 
very similar for both the datasets. When comparing the RMSE 
values as a function of compression ratio (Fig. 4 (e) and (f)), 
the performances of the different algorithms differ less from 
each other than with temperature and air pressure datasets. 

The new algorithms, RT-LRbTC-2Δt and RT-WLRbTC-
2Δt, showed better overall performance than the other linear 
regression-based algorithms for wind speed datasets. Thus, 
these new algorithms are potential methods for compressing 
wind-speed data if the additional inherent latency is 
acceptable. 

VI. SUMMARY OF THE RESULTS 
LTC had the best compression efficiency for all datasets, 

but at the same time, it had the largest RMSE values with a 
certain error bound. The M-LRbTC algorithm benefits from 
increasing the N value from 3 to 4 or 5; however, it makes the 
algorithm more complex and increases the inherent latency. 
The new versions (RT-LRbTC-2Δt and RT-WLRbTC-2Δt) 
have slightly better compression performance than RT-
LRbTC. These new algorithms have the same benefit as the 
RT-LRbTC in that only one transmitting period is needed for 
each linear segment. The weighted linear regression did not 
improve the compression performance compared with RT-
LRbTC-2Δt. Among the tested algorithms, RT-LRbTC is the 
best algorithm if a short inherent latency is required, as shown 
in Table I. If the predicted latency is required, then different 
versions of RT-LRbTC or M-LRbTC (when regression line 
parameters are sent) are suitable algorithms. LTC has superior 
compression performance, but unpredictable latency; thus, it

Fig. 4. Compression algorithms’ performance for wind speed datasets 

 



is not well suited for online data stream compression or near 
real-time applications. With a certain error bound, the LTC 
had the largest RMSE values, and thus had the lowest 
compression quality. Linear regression-based algorithms have 
very similar RMSE values, and thus have a similar 
performance in terms of compression quality. The two new 
algorithms proved to be suitable for compressing online 
environmental sensor data streams with a predictable but 
slightly longer inherent latency than the original RT-LRbTC. 

VII. CONCLUSIONS 
Different linearity-based sensor data compression 

algorithms were presented, and their efficiency to compress 
different environmental microclimate datasets was tested with 
real datasets. The environmental magnitudes tested were 
temperature, air pressure and wind speed. Algorithms were 
compared using the compression ratio (CR) and quality 
measurements as the root mean square error (RMSE). Inherent 
latency was used as a feature to compare the ability of 
different algorithms to compress data in the online mode. 

The datasets used were real datasets acquired from the 
Finnish Meteorological Institute’s Open Data Service. The 
datasets were used retrospectively and not in the online mode. 
Thus, the dataset characteristics can be used to compare the 
compression results of different compression algorithms. The 
datasets were measurement values from the year 2019, but the 
characteristics of those datasets can be used to predict the 
performance of different algorithms in the future in that 
measurement station and measurement setup. In different 
places (microclimates), different magnitudes have a behavior 
typical for that place. Thus, the available dataset for that 
specific location can be used to predict the characteristics of 
future datasets and thus predict the performance of the 
different algorithms. 

Two new versions of the RT-LRbTC are presented in this 
paper. These new versions were tested and compared with 
other algorithms. LTC has a superior compression ratio 
compared to other methods but as a disadvantage, LTC has 
unpredictable inherent latency. The quality measurements 
demonstrate that the LTC also has the largest reconstruction 
error when a certain error bound is used. The quality 
measurements between the different versions of M-LRbTC 
and RT-LRbTC are very close to each other.  

The new versions of the RT-LRbTC algorithm (RT-
LRbTC-2Δt and RT-WLRbTC-2Δt) present better 
compression ratios than the basic version of the RT-LRbTC, 
but at the cost of a larger inherent latency. In addition, the 
quality measurements are slightly better for the new versions. 
Using weighted linear regression to calculate the regression 
line, weighting the last value used to calculate the line, did not 
yield any better results than the regular linear regression line. 
Thus, it only adds the computational complexity of the 
compression algorithm, without any significant benefits. 

All the presented and tested linearity-based compression 
algorithms are very simple and thus suitable for use in 
constrained wireless sensor nodes to reduce the overall energy 
consumption and extend the battery lifetime. These 
compression methods can significantly reduce the number of 
wireless transmission periods and, consequently, lower the 
energy consumption of the sensor node. 
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