dc.contributor.author | Kow, Pu-Zhao | |
dc.date.accessioned | 2023-04-25T10:05:00Z | |
dc.date.available | 2023-04-25T10:05:00Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Kow, P.-Z. (2023). On the Landis conjecture for the fractional Schrödinger equation. <i>Journal of Spectral Theory</i>, <i>12</i>(3), 1023-1077. <a href="https://doi.org/10.4171/jst/433" target="_blank">https://doi.org/10.4171/jst/433</a> | |
dc.identifier.other | CONVID_182893157 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/86580 | |
dc.description.abstract | In this paper, we study a Landis-type conjecture for the general fractional Schrödinger equation ((−P)s+q)u=0. As a byproduct, we also prove the additivity and boundedness of the linear operator (−P)s for non-smooth coefficents. For differentiable potentials q, if a solution decays at a rate exp (−∣x∣1+), then the solution vanishes identically. For non-differentiable potentials q, if a solution decays at a rate exp (−∣x∣4s−14s+), then the solution must again be trivial. The proof relies on delicate Carleman estimates. This study is an extension of the work by Rüland and Wang (2019). | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | European Mathematical Society - EMS - Publishing House GmbH | |
dc.relation.ispartofseries | Journal of Spectral Theory | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Landis conjecture | |
dc.subject.other | unique continuation at infinity | |
dc.subject.other | fractional Schrödinger equation | |
dc.title | On the Landis conjecture for the fractional Schrödinger equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202304252691 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1023-1077 | |
dc.relation.issn | 1664-039X | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 12 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 European Mathematical Society. Published by EMS Press. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.format.content | fulltext | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.4171/jst/433 | |
jyx.fundinginformation | This research is partially supported by MOST 105-2115-M-002-014-MY3, MOST 108-2115-M-002-002-MY3, and MOST 109-2115. | |
dc.type.okm | A1 | |