On the Landis conjecture for the fractional Schrödinger equation
Kow, P.-Z. (2023). On the Landis conjecture for the fractional Schrödinger equation. Journal of Spectral Theory, 12(3), 1023-1077. https://doi.org/10.4171/jst/433
Julkaistu sarjassa
Journal of Spectral TheoryTekijät
Päivämäärä
2023Tekijänoikeudet
© 2023 European Mathematical Society. Published by EMS Press.
In this paper, we study a Landis-type conjecture for the general fractional Schrödinger equation ((−P)s+q)u=0. As a byproduct, we also prove the additivity and boundedness of the linear operator (−P)s for non-smooth coefficents. For differentiable potentials q, if a solution decays at a rate exp (−∣x∣1+), then the solution vanishes identically. For non-differentiable potentials q, if a solution decays at a rate exp (−∣x∣4s−14s+), then the solution must again be trivial. The proof relies on delicate Carleman estimates. This study is an extension of the work by Rüland and Wang (2019).
Julkaisija
European Mathematical Society - EMS - Publishing House GmbHISSN Hae Julkaisufoorumista
1664-039XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/182893157
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research is partially supported by MOST 105-2115-M-002-014-MY3, MOST 108-2115-M-002-002-MY3, and MOST 109-2115.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
An inverse problem for the fractional Schrödinger equation in a magnetic field
Covi, Giovanni (Institute of Physics, 2020)This paper shows global uniqueness in an inverse problem for a fractional magnetic Schrödinger equation (FMSE): an unknown electromagnetic field in a bounded domain is uniquely determined up to a natural gauge by infinitely ... -
The Calderón problem for the fractional Schrödinger equation with drift
Cekić, Mihajlo; Lin, Yi-Hsuan; Rüland, Angkana (Springer, 2020)We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number ... -
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
Danca, Marius-F.; Fečkan, Michal; Kuznetsov, Nikolay; Chen, Guanrong (Springer, 2018) -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.