Näytä suppeat kuvailutiedot

dc.contributor.authorAfsar, Bekir
dc.contributor.authorSilvennoinen, Johanna
dc.contributor.authorMiettinen, Kaisa
dc.contributor.editorEmmerich, Michael
dc.contributor.editorDeutz, André
dc.contributor.editorWang, Hao
dc.contributor.editorKononova, Anna V.
dc.contributor.editorNaujoks, Boris
dc.contributor.editorLi, Ke
dc.contributor.editorMiettinen, Kaisa
dc.contributor.editorYevseyeva, Iryna
dc.date.accessioned2023-03-29T11:33:21Z
dc.date.available2023-03-29T11:33:21Z
dc.date.issued2023
dc.identifier.citationAfsar, B., Silvennoinen, J., & Miettinen, K. (2023). A Systematic Way of Structuring Real-World Multiobjective Optimization Problems. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), <i>Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings</i> (pp. 593-605). Springer Nature Switzerland. Lecture Notes in Computer Science, 13970. <a href="https://doi.org/10.1007/978-3-031-27250-9_42" target="_blank">https://doi.org/10.1007/978-3-031-27250-9_42</a>
dc.identifier.otherCONVID_178488622
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/86186
dc.description.abstractIn recent decades, the benefits of applying multiobjective optimization (MOO) methods in real-world applications have rapidly increased. The MOO literature mostly focuses on problem-solving, typically assuming the problem has already been correctly formulated. The necessity of verifying the MOO problem and the potential impacts of having an incorrect problem formulation on the optimization results are not emphasized enough in the literature. However, verification is crucial since the optimization results will not be meaningful without an accurate problem formulation, not to mention the resources spent in the optimization process being wasted. In this paper, we focus on the MOO problem structuring, which we believe deserves more attention. The novel contribution is the proposed systematic way of structuring MOO problems that leverages problem structuring approaches from the literature on multiple criteria decision analysis (MCDA). They are not directly applicable to the formulation of MOO problems since the objective functions in the MOO problem depend on decision variables and constraint functions, whereas MCDA problems have a given set of solution alternatives characterized by criterion values. Therefore, we propose to elicit expert knowledge to identify decision variables and constraint functions, in addition to the objective functions, to construct a MOO problem appropriately. Our approach also enables the verification and validation of the problem before the actual decision making process.en
dc.format.extent636
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Nature Switzerland
dc.relation.ispartofEvolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsIn Copyright
dc.subject.otherproblem structuring
dc.subject.otherMOO problem formulation
dc.subject.othereliciting expert knowledge
dc.subject.otheridentifying objectives
dc.subject.otherdecision making
dc.subject.otherstakeholder interviews
dc.titleA Systematic Way of Structuring Real-World Multiobjective Optimization Problems
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202303292326
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineKoulutusteknologia ja kognitiotiedefi
dc.contributor.oppiaineKognitiotiedefi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineLearning and Cognitive Sciencesen
dc.contributor.oppiaineCognitive Scienceen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-031-27249-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange593-605
dc.relation.issn0302-9743
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Conference on Evolutionary Multi-Criterion Optimization
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopäätöksenteko
dc.subject.ysoongelmanratkaisu
dc.subject.ysosovellukset (soveltaminen)
dc.subject.ysosidosryhmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p6006
jyx.subject.urihttp://www.yso.fi/onto/yso/p28185
jyx.subject.urihttp://www.yso.fi/onto/yso/p8776
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-27250-9_42
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright