A Systematic Way of Structuring Real-World Multiobjective Optimization Problems
Afsar, B., Silvennoinen, J., & Miettinen, K. (2023). A Systematic Way of Structuring Real-World Multiobjective Optimization Problems. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings (pp. 593-605). Springer Nature Switzerland. Lecture Notes in Computer Science, 13970. https://doi.org/10.1007/978-3-031-27250-9_42
Julkaistu sarjassa
Lecture Notes in Computer ScienceToimittajat
Li, Ke |
Päivämäärä
2023Oppiaine
Multiobjective Optimization GroupKoulutusteknologia ja kognitiotiedeKognitiotiedeLaskennallinen tiedeResurssiviisausyhteisöPäätöksen teko monitavoitteisestiMultiobjective Optimization GroupLearning and Cognitive SciencesCognitive ScienceComputational ScienceSchool of Resource WisdomDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
In recent decades, the benefits of applying multiobjective optimization (MOO) methods in real-world applications have rapidly increased. The MOO literature mostly focuses on problem-solving, typically assuming the problem has already been correctly formulated. The necessity of verifying the MOO problem and the potential impacts of having an incorrect problem formulation on the optimization results are not emphasized enough in the literature. However, verification is crucial since the optimization results will not be meaningful without an accurate problem formulation, not to mention the resources spent in the optimization process being wasted.
In this paper, we focus on the MOO problem structuring, which we believe deserves more attention. The novel contribution is the proposed systematic way of structuring MOO problems that leverages problem structuring approaches from the literature on multiple criteria decision analysis (MCDA). They are not directly applicable to the formulation of MOO problems since the objective functions in the MOO problem depend on decision variables and constraint functions, whereas MCDA problems have a given set of solution alternatives characterized by criterion values. Therefore, we propose to elicit expert knowledge to identify decision variables and constraint functions, in addition to the objective functions, to construct a MOO problem appropriately. Our approach also enables the verification and validation of the problem before the actual decision making process.
...
Julkaisija
Springer Nature SwitzerlandEmojulkaisun ISBN
978-3-031-27249-3Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/178488622
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Key Issues in Real-World Applications of Many-Objective Optimisation and Decision Analysis
Deb, Kalyanmoy; Fleming, Peter; Jin, Yaochu; Miettinen, Kaisa; Reed, Patrick M. (Springer, 2023)The insights and benefits to be realised through the optimisation of multiple independent, but conflicting objectives are well recognised by practitioners seeking effective and robust solutions to real-world application ... -
Many-Objective Quality Measures
Afsar, Bekir; Fieldsend, Jonathan E.; Guerreiro, Andreia P.; Miettinen, Kaisa; Rojas Gonzalez, Sebastian; Sato, Hiroyuki (Springer, 2023)A key concern when undertaking any form of optimisation is how to characterise the quality of the putative solution returned. In many-objective optimisation an added complication is that such measures are on a set of ... -
Visualisation for Decision Support in Many-Objective Optimisation : State-of-the-art, Guidance and Future Directions
Hakanen, Jussi; Gold, David; Miettinen, Kaisa; Reed, Patrick M. (Springer, 2023)This chapter describes the state-of-the-art in visualisation for decision support processes in problems with many objectives. Visualisation is an important part of a constructive decision making process for examining real ... -
A Visualizable Test Problem Generator for Many-Objective Optimization
Fieldsend, Jonathan E.; Chugh, Tinkle; Allmendinger, Richard; Miettinen, Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2022)Visualizing the search behavior of a series of points or populations in their native domain is critical in understanding biases and attractors in an optimization process. Distancebased many-objective optimization test ... -
Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach
Shavazipour, Babooshka; Kwakkel, Jan H.; Miettinen, Kaisa (Elsevier BV, 2021)This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.