Näytä suppeat kuvailutiedot

dc.contributor.authorRahkonen, Samuli
dc.date.accessioned2023-02-24T07:15:46Z
dc.date.available2023-02-24T07:15:46Z
dc.date.issued2023
dc.identifier.isbn978-951-39-9299-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85630
dc.description.abstractA typical consumer camera captures three bands of light corresponding to red, green and blue colors. A hyperspectral imager captures dozens or even hundreds of bands. A depth sensing camera captures the distance to the target at each pixel. Imaging spectra and depth opens new possibilities for extracting information about the target, and these kind of imagers have already been used in applications in agriculture, astronomy, forestry, medical imaging and other industries. The captured high-dimensional data volumes are large, and extracting meaningful information from them requires advanced and efficient processing methods. Previously, the need for expert manual work has limited the utilization of data in large scale. This research introduces neural network models for solving these problems in a few case applications. It also demonstrates hyperspectral measurement methods: one for radiance approximation and another for angular reflectance measurement by combining a depth camera with a hyperspectral camera.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Pölönen, I., Rahkonen, S., Annala, L., & Neittaanmäki, N. (2019). Convolutional neural networks in skin cancer detection using spatial and spectral domain. In <i>B. Choi, & H. Zeng (Eds.), Proceedings of SPIE Volume 10851 : Photonics in Dermatology and Plastic Surgery 2019 (Article 108510B). SPIE, The International Society for Optical Engineering. SPIE conference proceedings, 10851.</i> DOI: <a href="https://doi.org/10.1117/12.2509871"target="_blank">10.1117/12.2509871</a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/63888"target="_blank"> jyx.jyu.fi/handle/123456789/63888</a>
dc.relation.haspart<b>Artikkeli II:</b> Pölönen, I., Annala, L., Rahkonen, S., Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., & Hakala, T. (2019). Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network. In <i>WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE.</i> DOI: <a href="https://doi.org/10.1109/WHISPERS.2018.8747253"target="_blank">10.1109/WHISPERS.2018.8747253</a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/73412"target="_blank"> jyx.jyu.fi/handle/123456789/73412</a>
dc.relation.haspart<b>Artikkeli III:</b> Rahkonen, S., Koskinen, E., Pölönen, I., Heinonen, T., Ylikomi, T., Äyrämö, S., & Eskelinen, M. A. (2020). Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks. <i>Journal of Medical Imaging, 7(2), Article 024001.</i> DOI: <a href="https://doi.org/10.1117/1.JMI.7.2.024001"target="_blank">10.1117/1.JMI.7.2.024001</a>
dc.relation.haspart<b>Artikkeli IV:</b> Rahkonen, S. and Pölönen, I. (2023). Method for radiance approximation of hyperspectral data using deep neural network. <i>Impact of scientific computing on science and society. Springer. Pending publication.</i>
dc.relation.haspart<b>Artikkeli V:</b> Rahkonen, S., Lind, L., Raita-Hakola, A.-M., Kiiskinen, S., & Pölönen, I. (2022). Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera. <i>Sensors, 22(22), Article 8668.</i> DOI: <a href="https://doi.org/10.3390/s22228668"target="_blank">10.3390/s22228668</a>
dc.rightsIn Copyright
dc.titleDeep learning architectures for hyperspectral imaging applications
dc.typeDiss.
dc.identifier.urnURN:ISBN:978-951-39-9299-6
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright