Deep learning architectures for hyperspectral imaging applications
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2023Tekijänoikeudet
© The Author & University of Jyväskylä
A typical consumer camera captures three bands of light corresponding to red,
green and blue colors. A hyperspectral imager captures dozens or even hundreds
of bands. A depth sensing camera captures the distance to the target at
each pixel. Imaging spectra and depth opens new possibilities for extracting information
about the target, and these kind of imagers have already been used
in applications in agriculture, astronomy, forestry, medical imaging and other industries.
The captured high-dimensional data volumes are large, and extracting
meaningful information from them requires advanced and efficient processing
methods. Previously, the need for expert manual work has limited the utilization
of data in large scale. This research introduces neural network models for solving
these problems in a few case applications. It also demonstrates hyperspectral
measurement methods: one for radiance approximation and another for angular
reflectance measurement by combining a depth camera with a hyperspectral
camera.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-9299-6ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Pölönen, I., Rahkonen, S., Annala, L., & Neittaanmäki, N. (2019). Convolutional neural networks in skin cancer detection using spatial and spectral domain. In B. Choi, & H. Zeng (Eds.), Proceedings of SPIE Volume 10851 : Photonics in Dermatology and Plastic Surgery 2019 (Article 108510B). SPIE, The International Society for Optical Engineering. SPIE conference proceedings, 10851. DOI: 10.1117/12.2509871. JYX: jyx.jyu.fi/handle/123456789/63888
- Artikkeli II: Pölönen, I., Annala, L., Rahkonen, S., Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., & Hakala, T. (2019). Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network. In WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE. DOI: 10.1109/WHISPERS.2018.8747253. JYX: jyx.jyu.fi/handle/123456789/73412
- Artikkeli III: Rahkonen, S., Koskinen, E., Pölönen, I., Heinonen, T., Ylikomi, T., Äyrämö, S., & Eskelinen, M. A. (2020). Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks. Journal of Medical Imaging, 7(2), Article 024001. DOI: 10.1117/1.JMI.7.2.024001
- Artikkeli IV: Rahkonen, S. and Pölönen, I. (2023). Method for radiance approximation of hyperspectral data using deep neural network. Impact of scientific computing on science and society. Springer. Pending publication.
- Artikkeli V: Rahkonen, S., Lind, L., Raita-Hakola, A.-M., Kiiskinen, S., & Pölönen, I. (2022). Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera. Sensors, 22(22), Article 8668. DOI: 10.3390/s22228668
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3578]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Discovering knowledge in various applications with a novel hyperspectral imager
Pölönen, Ilkka (University of Jyväskylä, 2013) -
Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications
Honkavaara, E.; Hakala, T.; Markelin, L.; Jaakkola, A.; Saari, H.; Ojanen, H.; Pölönen, Ilkka; Tuominen, S.; Näsi, R.; Rosnell, T.; Viljanen, N. (International Society for Photogrammetry and Remote Sensing (ISPRS), 2014)The unmanned airborne system (UAS) remote sensing using lightweight multi- and hyperspectral imaging sensors offer new possibilities for the environmental monitoring applications. Based on the accurate measurements of the ... -
FPI Based Hyperspectral Imager for the Complex Surfaces : Calibration, Illumination and Applications
Raita-Hakola, Anna-Maria; Annala, Leevi; Lindholm, Vivian; Trops, Roberts; Näsilä, Antti; Saari, Heikki; Ranki, Annamari; Pölönen, Ilkka (MDPI AG, 2022)Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral ... -
From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications
Raita-Hakola, Anna-Maria (Jyväskylän yliopisto, 2022)The hypothesis of this study is “The machine vision systems should be designed, built and evaluated through the machine vision fundamental phases.” The dissertation defines the fundamentals inspired by the literature and ... -
Modern architecture for large web applications
Piispanen, Mark (2017)Web sovellukset kasvavat nykyään nopeasti. On tärkeää valita vakaa arkkitehtuuri isolle sovellukselle, jotta sitä voi ylläpitää, suurentaa ja skaalata. Viime vuosina, on tullut suositummaksi sovellukset jotka käyttävät ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.