From sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications
Julkaistu sarjassa
JYU dissertationsTekijät
Päivämäärä
2022Tekijänoikeudet
© The Author & University of Jyväskylä
The hypothesis of this study is “The machine vision systems should be designed, built and evaluated through the machine vision fundamental phases.” The dissertation defines the fundamentals inspired by the literature and shows how to use them and design a machine vision system from the sensor level to the analysis. The study covers the hardware and software designing phases, continuing to the data pre-processing, transformation and analysis phases.
The conducted research consists of six published articles. Three have a data-analytical point of view concentrating on developing and testing new versions of a distance-based machine learning method Minimal Learning Machine (MLM). In contrast, the rest of the articles introduces a novel concept of 3D hyperspectral imaging and convolutional neural networks for detecting, classifying and delineating skin cancer on complex skin surfaces. The skin cancer imager concept includes devices, user interfaces, pre-processing, transformation and analysis.
As the main results, we introduce the machine vision fundamentals with three effective variations from the MLM, which is suitable for hyperspectral imaging anomaly detection and classification tasks in real-time applications. Other outcomes were a novel hyperspectral imaging concept that can reach complex skin surfaces, opening the road for future optical biopsy. As skin cancers are the world’s third most common type of cancer, an optical biopsy can reduce diagnosis and treatment costs and save lives through early, accurate detection.
The results confirm that by developing machine vision systems according to the application and paying attention to the machine vision fundamentals, it is possible, for example, to influence the system’s computational complexity and improve the system’s results. By understanding the multi-directional relations between the fundamental phases of a machine vision system, we can affect the overall performance. For instance, by designing a machine vision system that collects only the necessary data and uses optimised fast computational methods, we can affect the system’s efficiency, energy need and operating costs.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-9240-8ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Hakola, A.-M., & Pölönen, I. (2020). Minimal learning machine in hyperspectral imaging classification. In L. Bruzzone, F. Bovolo, & E. Santi (Eds.), Image and Signal Processing for Remote Sensing XXVI (Article 115330R). SPIE. Proceedings of SPIE : the International Society for Optical Engineering, 11533. DOI: 10.1117/12.2573578. JYX: jyx.jyu.fi/handle/123456789/72431
- Artikkeli II: Raita-Hakola, A.-M., & Pölönen, I. (2021). Piecewise anomaly detection using minimal learning machine for hyperspectral images. In N. Paparoditis, C. Mallet, F. Lafarge, M. Y. Yang, J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, E. Honkavaara, M. Scaioni, J. Zhang, A. Peled, L. Wu, R. Li, M. Yoshimura, K. Di, O. Altan, H. M. Abdulmuttalib, & F. S. Faruque (Eds.), XXIV ISPRS Congress Imaging today, foreseeing tomorrow, Commission III (pp. 89-96). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2021. DOI: 10.5194/isprs-annals-V-3-2021-89-2021
- Artikkeli III: Raita-Hakola, A.-M., & Pölönen, I. (2022). Updating strategies for distance based classification model with recursive least squares. In J. Jiang, A. Shaker, & H. Zhang (Eds.), XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III (pp. 163-170). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2022. DOI: 10.5194/isprs-annals-V-3-2022-163-2022
- Artikkeli IV: Raita-Hakola, A.-M., Annala, L., Lindholm, V., Trops, R., Näsilä, A., Saari, H., Ranki, A., & Pölönen, I. (2022). FPI Based Hyperspectral Imager for the Complex Surfaces : Calibration, Illumination and Applications. Sensors, 22(9), Article 3420. DOI: 10.3390/s22093420
- Artikkeli V: Lindholm, V., Raita-Hakola, A.-M., Annala, L., Salmivuori, M., Jeskanen, L., Saari, H., Koskenmies, S., Pitkänen, S., Pölönen, I., Isoherranen, K., & Ranki, A. (2022). Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks. Journal of Clinical Medicine, 11(7), Article 1914. DOI: 10.3390/jcm11071914
- Artikkeli VI: Trops, R., Hakola, A.-M., Jääskeläinen, S., Näsilä, A., Annala, L., Eskelinen, M., Saari, H., Pölönen, I., & Rissanen, A. (2019). Miniature MOEMS hyperspectral imager with versatile analysis tools. In W. Piyawattanametha, Y.-H. Park, & H. Zappe (Eds.), Proceedings of SPIE Volume 10931 : MOEMS and Miniaturized Systems XVIII; 109310W (Article 109310W). SPIE, The International Society for Optical Engineering. SPIE conference proceedings, 10931. DOI: 10.1117/12.2506366. JYX: jyx.jyu.fi/handle/123456789/64968
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3571]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
CCTVCV : Computer Vision model/dataset supporting CCTV forensics and privacy applications
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo; Lahtinen, Tuomo; Sintonen, Lauri (IEEE, 2022)The increased, widespread, unwarranted, and unaccountable use of Closed-Circuit TeleVision (CCTV) cameras globally has raised concerns about privacy risks for the last several decades. Recent technological advances implemented ... -
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ... -
Ethical issues in topical computer vision applications
Lauronen, Mikael (2017)Computer vision is a research area that contains multiple methods to approach numerous visual problems. In the past decade, it has been rapidly evolving with the introduction of many new technologies and applications that ... -
Improvements and applications of the elements of prototype-based clustering
Hämäläinen, Joonas (Jyväskylän yliopisto, 2018) -
Linearity-based Sensor Data Online Compression Methods for Environmental Applications
Väänänen, Olli; Hämäläinen, Timo (IEEE, 2023)Environmental monitoring is a typical Internet of Things (IoT) application. Environmental monitoring plays a significant role, for example, in smart farming and smart city applications. Environmental magnitudes are usually ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.