Näytä suppeat kuvailutiedot

dc.contributor.authorNordhausen, Klaus
dc.contributor.authorTaskinen, Sara
dc.contributor.authorVirta, Joni
dc.date.accessioned2023-02-02T05:47:42Z
dc.date.available2023-02-02T05:47:42Z
dc.date.issued2022
dc.identifier.citationNordhausen, K., Taskinen, S., & Virta, J. (2022). Signal dimension estimation in BSS models with serial dependence. In <i>ICECCME 2022 : Proceedings of the 2nd International Conference on Electrical, Computer, Communications and Mechatronics Engineering</i>. IEEE. <a href="https://doi.org/10.1109/ICECCME55909.2022.9988152" target="_blank">https://doi.org/10.1109/ICECCME55909.2022.9988152</a>
dc.identifier.otherCONVID_164329489
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85279
dc.description.abstractMany modern multivariate time series datasets contain a large amount of noise, and the first step of the data analysis is to separate the noise channels from the signals of interest. A crucial part of this dimension reduction is determining the number of signals. In this paper we approach this problem by considering a noisy latent variable time series model which comprises many popular blind source separation models. We propose a general framework for the estimation of the signal dimension that is based on testing for sub-sphericity and give examples of different tests suitable for time series settings. In the inference we rely on bootstrap null distributions. Several simulation studies are used to demonstrate the performances of the tests in different time series settings.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICECCME 2022 : Proceedings of the 2nd International Conference on Electrical, Computer, Communications and Mechatronics Engineering
dc.rightsIn Copyright
dc.subject.otherdimension reduction
dc.subject.othernonstationary source separation
dc.subject.othersecond order source separation
dc.subject.othersub-sphericity
dc.subject.otherblock bootstrap
dc.titleSignal dimension estimation in BSS models with serial dependence
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202302021562
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-7096-4
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering
dc.subject.ysosignaalinkäsittely
dc.subject.ysoaikasarja-analyysi
dc.subject.ysoaikasarjat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p22747
jyx.subject.urihttp://www.yso.fi/onto/yso/p12290
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICECCME55909.2022.9988152
jyx.fundinginformationThe work of KN was supported by Austrian Science Fund (FWF) Grant P31881-N32. The work of JV was supported by Academy of Finland, Grant 335077.
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright