Näytä suppeat kuvailutiedot

dc.contributor.authorMuehlmann, C.
dc.contributor.authorDe Iaco, S.
dc.contributor.authorNordhausen, K.
dc.date.accessioned2023-01-19T10:44:33Z
dc.date.available2023-01-19T10:44:33Z
dc.date.issued2023
dc.identifier.citationMuehlmann, C., De Iaco, S., & Nordhausen, K. (2023). Blind recovery of sources for multivariate space-time random fields. <i>Stochastic Environmental Research and Risk Assessment</i>, <i>37</i>(4), 1593-1613. <a href="https://doi.org/10.1007/s00477-022-02348-2" target="_blank">https://doi.org/10.1007/s00477-022-02348-2</a>
dc.identifier.otherCONVID_172575739
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85097
dc.description.abstractWith advances in modern worlds technology, huge datasets that show dependencies in space as well as in time occur frequently in practice. As an example, several monitoring stations at different geographical locations track hourly concentration measurements of a number of air pollutants for several years. Such a dataset contains thousands of multivariate observations, thus, proper statistical analysis needs to account for dependencies in space and time between and among the different monitored variables. To simplify the consequent multivariate spatio-temporal statistical analysis it might be of interest to detect linear transformations of the original observations that result in straightforward interpretative, spatio-temporally uncorrelated processes that are also highly likely to have a real physical meaning. Blind source separation (BSS) represents a statistical methodology which has the aim to recover so-called latent processes, that exactly meet the former requirements. BSS was already successfully used in sole temporal and sole spatial applications with great success, but, it was not yet introduced for the spatio-temporal case. In this contribution, a reasonable and innovative generalization of BSS for multivariate space-time random fields (stBSS), under second-order stationarity, is proposed, together with two space-time extensions of the well-known algorithms for multiple unknown signals extraction (stAMUSE) and the second-order blind identification (stSOBI) which solve the formulated problem. Furthermore, symmetry and separability properties of the model are elaborated and connections to the space-time linear model of coregionalization and to the classical principal component analysis are drawn. Finally, the usefulness of the new methods is shown in a thorough simulation study and on a real environmental application.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesStochastic Environmental Research and Risk Assessment
dc.rightsCC BY 4.0
dc.titleBlind recovery of sources for multivariate space-time random fields
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202301191398
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1593-1613
dc.relation.issn1436-3240
dc.relation.numberinseries4
dc.relation.volume37
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysoaikasarja-analyysi
dc.subject.ysoaikasarjat
dc.subject.ysomonimuuttujamenetelmät
dc.subject.ysosignaalinkäsittely
dc.subject.ysogeostatistiikka
dc.subject.ysopaikkatiedot
dc.subject.ysopaikkatietoanalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p22747
jyx.subject.urihttp://www.yso.fi/onto/yso/p12290
jyx.subject.urihttp://www.yso.fi/onto/yso/p2131
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p27841
jyx.subject.urihttp://www.yso.fi/onto/yso/p2152
jyx.subject.urihttp://www.yso.fi/onto/yso/p28516
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://www.scottishairquality.scot/data
dc.relation.doi10.1007/s00477-022-02348-2
jyx.fundinginformationOpen access funding provided by Austrian Science Fund (FWF). The work of CM and KN was supported by the Austrian Science Fund P31881-N32.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0