Show simple item record

dc.contributor.authorMendoza Garay, Juan Ignacio
dc.date.accessioned2023-01-05T10:52:35Z
dc.date.available2023-01-05T10:52:35Z
dc.date.issued2022
dc.identifier.citationMendoza Garay, J. I. (2022). Segmentation boundaries in accelerometer data of arm motion induced by music : online computation and perceptual assessment. <i>Human Technology</i>, <i>18</i>(3), 250-266. <a href="https://doi.org/10.14254/1795-6889.2022.18-3.4" target="_blank">https://doi.org/10.14254/1795-6889.2022.18-3.4</a>
dc.identifier.otherCONVID_164756691
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84786
dc.description.abstractSegmentation is a cognitive process involved in the understanding of information perceived through the senses. Likewise, the automatic segmentation of data captured by sensors may be used for the identification of patterns. This study is concerned with the segmentation of dancing motion captured by accelerometry and its possible applications, such as pattern learning and recognition, or gestural control of devices. To that effect, an automatic segmentation system was formulated and tested. Two participants were asked to ‘dance with one arm’ while their motion was measured by an accelerometer. The performances were recorded on video, and manually segmented by six annotators later. The annotations were used to optimize the automatic segmentation system, maximizing a novel similarity score between computed and annotated segmentations. The computed segmentations with highest similarity to each annotation were then manually assessed by the annotators, resulting in Precision between 0.71 and 0.89, and Recall between 0.82 to 1.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherCentre of Sociological Research
dc.relation.ispartofseriesHuman Technology
dc.rightsCC BY-NC 4.0
dc.subject.othergestural interface
dc.subject.otherperceptual evaluation
dc.subject.othertemporal segmentation
dc.subject.otheraccelerometer
dc.subject.otherbodily motion
dc.subject.othersimilarity
dc.titleSegmentation boundaries in accelerometer data of arm motion induced by music : online computation and perceptual assessment
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202301051141
dc.contributor.laitosMusiikin, taiteen ja kulttuurin tutkimuksen laitosfi
dc.contributor.laitosDepartment of Music, Art and Culture Studiesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange250-266
dc.relation.issn1795-6889
dc.relation.numberinseries3
dc.relation.volume18
dc.type.versionpublishedVersion
dc.rights.copyright©2022 Mendoza, and the Centre of Sociological Research, Poland
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokiihtyvyys
dc.subject.ysokognitiiviset prosessit
dc.subject.ysosegmentointi
dc.subject.ysomittaus
dc.subject.ysoliike
dc.subject.ysohavainnointi
dc.subject.ysoliikeanalyysi
dc.subject.ysotanssi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23608
jyx.subject.urihttp://www.yso.fi/onto/yso/p5283
jyx.subject.urihttp://www.yso.fi/onto/yso/p18246
jyx.subject.urihttp://www.yso.fi/onto/yso/p4794
jyx.subject.urihttp://www.yso.fi/onto/yso/p706
jyx.subject.urihttp://www.yso.fi/onto/yso/p8802
jyx.subject.urihttp://www.yso.fi/onto/yso/p24952
jyx.subject.urihttp://www.yso.fi/onto/yso/p1278
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.relation.doi10.14254/1795-6889.2022.18-3.4
jyx.fundinginformationThis study was partially funded by the Finnish Foundation for Technology Promotion (Tekniikan edistämissäätiö).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC 4.0
Except where otherwise noted, this item's license is described as CC BY-NC 4.0