Estimating the mechanical cost of transport in human walking with a simple kinematic data-driven mechanical model
Katwal, P., Jaiswal, S., Jiang, D., Pyrhönen, L., Tuomisto, J., Rantalainen, T., Schwab, A. L., & Mikkola, A. (2024). Estimating the mechanical cost of transport in human walking with a simple kinematic data-driven mechanical model. PLoS ONE, 19(4), Article e0301706. https://doi.org/10.1371/journal.pone.0301706
Julkaistu sarjassa
PLoS ONETekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 the Authors
This work utilizes a simplified, streamlined approach to study the mechanical cost of transport in human walking. Utilizing the kinematic motion data of the center of mass, velocities and accelerations are determined using kinematic analysis; the applied force is then obtained using inverse dynamics. We calculate the mechanical cost of transport per step from both synthetic and measured data, using a very simple mechanical model of walking. The approach studied can serve as an informative gait characteristic to monitor rehabilitation in human walking.
Julkaisija
Public Library of ScienceISSN Hae Julkaisufoorumista
1932-6203Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213127651
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3139]
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was supported by Academy of Finland (https://www.aka.fi/en/) for Remote Virtual Physiotherapist consortium to AM under Grant #347932; and to TR under Grant #349470 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Using deep neural networks for kinematic analysis : challenges and opportunities
Cronin, Neil J. (Elsevier BV, 2021)Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ... -
Prediction of active peak force using a multilayer perceptron
Niemelä, Marko; Kulmala, Juha-Pekka; Kauppi, Jukka-Pekka; Kosonen, Jukka; Äyrämö, Sami (Springer London, 2017)Both kinematic parameters and ground reaction forces (GRFs) are necessary for understanding the biomechanics of running. Kinematic information of a runner is typically measured by a motion capture system whereas GRF during ... -
The Effect of a Change in the Difficulty Level of the Big Air Jump Take-off Phase in Joint Kinematics of Snowboarding Athletes
Piiparinen, Maija (2022)The purpose of this study was to elucidate the kinematic differences in the take-off phase of backside 360°, backside 540°, and backside 720° jumps in freestyle snowboarding. The study was conducted with 3D motion analysis. ... -
Effects of exercise intervention on gait kinematics and lower limb function of adolescents and young adults with cerebral palsy
Peltoniemi, Mika (2019)CP-vamma kulkee ihmisen mukana koko elämän ajan varhaislapsuudesta aikuisuuteen, sillä täysin parantavaa keinoa aivovaurion korjaamiseen ei ole löydetty. Ongelmat näyttäytyvät erityisesti liikkumisessa ja muussa motorisessa ... -
Wearing an ultrasound probe during walking does not influence lower limb joint kinematics in adolescents with cerebral palsy and typically developing peers
Cenni, Francesco; Alexander, Nathalie; Laatikainen-Raussi, Iida; Sukanen, Maria; Finni, Taija (Elsevier, 2024)Background Enhancing traditional three-dimensional gait analysis with a portable ultrasound device at the lower-limb muscle-tendon level enables direct measurement of muscle and tendon lengths during walking. However, it ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.