Quadrature Domains for the Helmholtz Equation with Applications to Non-scattering Phenomena
Kow, P.-Z., Larson, S., Salo, M., & Shahgholian, H. (2022). Quadrature Domains for the Helmholtz Equation with Applications to Non-scattering Phenomena. Potential Analysis, Early online. https://doi.org/10.1007/s11118-022-10054-5
Julkaistu sarjassa
Potential AnalysisPäivämäärä
2022Oppiaine
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsTekijänoikeudet
© The Author(s) 2022
In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
0926-2601Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164773198
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by Royal Institute of Technology.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A graph-based multigrid with applications
Pennanen, Anssi (University of Jyväskylä, 2010) -
A parallel domain decomposition method for the Helmholtz equation in layered media
Heikkola, Erkki; Ito, Kazufumi; Toivanen, Jari (Society for Industrial and Applied Mathematics, 2019)An efficient domain decomposition method and its parallel implementation for the solution of the Helmholtz equation in three-dimensional layered media are considered. A modified trilinear finite element discretization ... -
Traces of weighted function spaces : Dyadic norms and Whitney extensions
Koskela, Pekka; Soto, Tomás; Wang, Zhuang (Springer, 2017)The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950’s. In ... -
Applicability of pion–nucleus Drell–Yan data in global analysis of nuclear parton distribution functions
Paakkinen, Petja; Eskola, Kari; Paukkunen, Hannu (Elsevier B.V., 2017)Despite the success of modern nuclear parton distribution functions (nPDFs) in describing nuclear hard-process data, they still suffer from large uncertainties. One of the poorly constrained features is the possible asymmetry ... -
Strictly convex corners scatter
Päivärinta, Lassi; Salo, Mikko; Vesalainen, Esa V. (European Mathematical Society Publishing House, 2017)We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than ππ. This extends the earlier result of Blåsten, Päivärinta and Sylvester who considered rectangular corners. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.