Recent Progress in Metal-organic Frameworks (MOFs) for CO2 Capture At Different Pressures
Mahajan, S., & Lahtinen, M. (2022). Recent Progress in Metal-organic Frameworks (MOFs) for CO2 Capture At Different Pressures. Journal of Environmental Chemical Engineering, 10(6), Article 108930. https://doi.org/10.1016/j.jece.2022.108930
Published in
Journal of Environmental Chemical EngineeringDate
2022Discipline
Epäorgaaninen kemiaResurssiviisausyhteisöEpäorgaaninen ja analyyttinen kemiaInorganic ChemistrySchool of Resource WisdomInorganic and Analytical ChemistryCopyright
© 2022 The Author(s). Published by Elsevier Ltd.
Global climate change ensued by the rise in atmospheric CO2 levels is one of the greatest challenges our planet is facing today. This worldwide distress demands technologies that can contribute to our society toward “negative carbon emissions”. Carbon capture and storage (CCS) technologies are in in important role for capturing CO2 from existing emission sources, such as industrial and energy production point sources, before new more prominent modifications to the energy infrastructure can be implemented. Recently, alongside point source capture, direct air capture (DAC) processes have emerged as highly sought-after technologies that are able to capture CO2 from the ambient air. Alongside the traditional inorganic adsorbents, a new class of solid porous adsorbents, called as metal-organic frameworks (MOFs) have emerged in recent years also, as a group of potentially very efficient materials to capture CO2. The promising results of MOF-based adsorbents have already achieved great interest and have contributed to their ever-accelerating research to develop new and even better adsorbents for both point source and DAC recovery technologies. This review highlights the research that has been focused on utilizing MOFs in the carbon capture processes, particularly targeting materials applicable to low CO2 partial pressures but also capturing processes in pure CO2 (1 bar) will be reviewed, because it is a widely used test condition for characterizing sorption properties of MOF adsorbents. Herein, we outline four major approaches, through which the CO2 adsorption capacity and selectivity can be boosted, including targeted modifications of the metal centers, pore size control, proper selection and substitution of linker units, and functionalization of MOFs by amines. The mechanisms of the sorption event are also reviewed from the perspective of both physisorption and chemisorption phenomena. At the end of the review, we briefly examine the variables related to the coordination of technical-economical, process-technical, and physicochemical properties of adsorbents, which both researchers and engineers should consider when developing new adsorbents and recovery processes, with emphasis on material processing, capture capacity, selectivity, regeneration cyclicity, and cost.
...
Publisher
ElsevierISSN Search the Publication Forum
2213-3437Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/159485529
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Programme, AoFAdditional information about funding
The authors (SM and ML) acknowledge the funding from the Academy of Finland (decision number 329314) and University of Jyväskylä.License
Related items
Showing items with similar title or keywords.
-
Synthesis and testing of direct air capture adsorbents
Lundahl, Jussi (2021)Tämän tutkielman kirjallisuusosassa tarkastellaan hiilidioksidin tuottamia ongelmia ja ratkaisuja hiilidioksidin sieppaamiseen. Hiilidioksidin ilmasta kaappaus (DAC) ja siihen sopivia adsorbentteja käsitellään tarkemmin, ... -
Evaluating the viability of ethylenediamine-functionalized Mg-MOF-74 in direct air capture : The challenges of stability and slow adsorption rate
Mahajan, Shreya; Elfving, Jere; Lahtinen, Manu (Elsevier, 2024)Carbon removal technologies, such as direct air capture (DAC), hold great potential in mitigating anthropogenic CO2 emissions. Amine-tethered metal-organic frameworks (MOFs) that capture CO2 selectively via chemisorption ... -
Alkali-Activated Adsorbents from Slags : Column Adsorption and Regeneration Study for Nickel(II) Removal
Sundhararasu, Elavarasi; Tuomikoski, Sari; Runtti, Hanna; Hu, Tao; Varila, Toni; Kangas, Teija; Lassi, Ulla (MDPI, 2021)Alkali-activated adsorbents were synthesized by mixing three different slags from the steel industry: blast furnace slag (BFS), ladle slag (LS), and Lintz–Donawitz converter slag (LD). These powdered slag-based geopolymers ... -
Influence of a Cu–zirconia interface structure on CO2 adsorption and activation
Gell, Lars; Lempelto, Aku; Kiljunen, Toni; Honkala, Karoliina (American Institute of Physics, 2021)CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the ... -
Computational studies of chemical looping combustion materials and CO₂ activating surfaces
Parviainen, Teemu (University of Jyväskylä, 2016)