Näytä suppeat kuvailutiedot

dc.contributor.authorMahajan, Shreya
dc.contributor.authorLahtinen, Manu
dc.date.accessioned2023-01-03T06:23:54Z
dc.date.available2023-01-03T06:23:54Z
dc.date.issued2022
dc.identifier.citationMahajan, S., & Lahtinen, M. (2022). Recent Progress in Metal-organic Frameworks (MOFs) for CO2 Capture At Different Pressures. <i>Journal of Environmental Chemical Engineering</i>, <i>10</i>(6), Article 108930. <a href="https://doi.org/10.1016/j.jece.2022.108930" target="_blank">https://doi.org/10.1016/j.jece.2022.108930</a>
dc.identifier.otherCONVID_159485529
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84670
dc.description.abstractGlobal climate change ensued by the rise in atmospheric CO2 levels is one of the greatest challenges our planet is facing today. This worldwide distress demands technologies that can contribute to our society toward “negative carbon emissions”. Carbon capture and storage (CCS) technologies are in in important role for capturing CO2 from existing emission sources, such as industrial and energy production point sources, before new more prominent modifications to the energy infrastructure can be implemented. Recently, alongside point source capture, direct air capture (DAC) processes have emerged as highly sought-after technologies that are able to capture CO2 from the ambient air. Alongside the traditional inorganic adsorbents, a new class of solid porous adsorbents, called as metal-organic frameworks (MOFs) have emerged in recent years also, as a group of potentially very efficient materials to capture CO2. The promising results of MOF-based adsorbents have already achieved great interest and have contributed to their ever-accelerating research to develop new and even better adsorbents for both point source and DAC recovery technologies. This review highlights the research that has been focused on utilizing MOFs in the carbon capture processes, particularly targeting materials applicable to low CO2 partial pressures but also capturing processes in pure CO2 (1 bar) will be reviewed, because it is a widely used test condition for characterizing sorption properties of MOF adsorbents. Herein, we outline four major approaches, through which the CO2 adsorption capacity and selectivity can be boosted, including targeted modifications of the metal centers, pore size control, proper selection and substitution of linker units, and functionalization of MOFs by amines. The mechanisms of the sorption event are also reviewed from the perspective of both physisorption and chemisorption phenomena. At the end of the review, we briefly examine the variables related to the coordination of technical-economical, process-technical, and physicochemical properties of adsorbents, which both researchers and engineers should consider when developing new adsorbents and recovery processes, with emphasis on material processing, capture capacity, selectivity, regeneration cyclicity, and cost.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Environmental Chemical Engineering
dc.rightsCC BY 4.0
dc.subject.othermetal-organic frameworks
dc.subject.othercarbon capture
dc.subject.otherflue gas
dc.subject.otherdirect air capture
dc.subject.otheramine-functionalized
dc.subject.otheradsorption mechanism
dc.subject.otheropen metal sites
dc.subject.otherhybrid ultra-microporous materials
dc.subject.otherphysisorption
dc.subject.otherchemisorption
dc.subject.otherregeneration
dc.subject.otheradsorbent
dc.titleRecent Progress in Metal-organic Frameworks (MOFs) for CO2 Capture At Different Pressures
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202301031030
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen kemiafi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineInorganic Chemistryen
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2213-3437
dc.relation.numberinseries6
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber329314
dc.subject.ysoadsorptio
dc.subject.ysosavukaasut
dc.subject.ysohiili
dc.subject.ysohiilidioksidin talteenotto ja varastointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13395
jyx.subject.urihttp://www.yso.fi/onto/yso/p15958
jyx.subject.urihttp://www.yso.fi/onto/yso/p138
jyx.subject.urihttp://www.yso.fi/onto/yso/p24009
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.jece.2022.108930
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThe authors (SM and ML) acknowledge the funding from the Academy of Finland (decision number 329314) and University of Jyväskylä.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0