dc.contributor.author | Seker, Mert | |
dc.contributor.author | Männistö, Anssi | |
dc.contributor.author | Iosifidis, Alexandros | |
dc.contributor.author | Raitoharju, Jenni | |
dc.date.accessioned | 2022-12-28T09:51:56Z | |
dc.date.available | 2022-12-28T09:51:56Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Seker, M., Männistö, A., Iosifidis, A., & Raitoharju, J. (2022). Automatic social distance estimation for photographic studies : Performance evaluation, test benchmark, and algorithm. <i>Machine Learning with Applications</i>, <i>10</i>, Article 100427. <a href="https://doi.org/10.1016/j.mlwa.2022.100427" target="_blank">https://doi.org/10.1016/j.mlwa.2022.100427</a> | |
dc.identifier.other | CONVID_160105277 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/84621 | |
dc.description.abstract | The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain to be analyzed in proxemics studies. To obtain quantitative results for such studies, large media and/or personal photo collections must be analyzed. Several social distance monitoring methods have been proposed for safety purposes, but they are not directly applicable to general photo collections with large variations in the imaging setup. In such studies, the interest shifts from safety to analyzing subtle differences in social distances. Currently, there is no suitable benchmark for developing such algorithms. Collecting images with measured ground-truth pair-wise distances using different camera settings is cumbersome. Moreover, performance evaluation for these algorithms is not straightforward, and there is no widely accepted evaluation protocol. In this paper, we provide an image dataset with measured pair-wise social distances under different camera positions and settings. We suggest a performance evaluation protocol and provide a benchmark to easily evaluate such algorithms. We also propose an automatic social distance estimation method that can be applied on general photo collections. Our method is a hybrid method that combines deep learning-based object detection and human pose estimation with projective geometry. The method can be applied on uncalibrated single images with known focal length and sensor size. The results on our benchmark are encouraging with 91% human detection rate and only 38.24% average relative distance estimation error among the detected people. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Machine Learning with Applications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | social distance estimation | |
dc.subject.other | person detection | |
dc.subject.other | human pose estimation | |
dc.subject.other | performance evaluation | |
dc.subject.other | test benchmark | |
dc.subject.other | proxemics | |
dc.title | Automatic social distance estimation for photographic studies : Performance evaluation, test benchmark, and algorithm | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202212285855 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2666-8270 | |
dc.relation.volume | 10 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Author(s) | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | COVID-19 | |
dc.subject.yso | arviointi | |
dc.subject.yso | konenäkö | |
dc.subject.yso | projektiivinen geometria | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | algoritmit | |
dc.subject.yso | hahmontunnistus (tietotekniikka) | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | valokuvat | |
dc.subject.yso | etäisyys | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38829 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7413 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2618 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14431 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2699 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4168 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.mlwa.2022.100427 | |
jyx.fundinginformation | M. Seker, A. Männistö, and J. Raitoharju would like to acknowledge the financial support from Helsingin Sanomat foundation, project ‘‘Machine learning based analysis of the photographs of the corona crisis’’. A. Iosifidis acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957337 (MARVEL). | |
dc.type.okm | A1 | |