Näytä suppeat kuvailutiedot

dc.contributor.authorKičiatovas, Dovydas
dc.contributor.authorGuo, Qingli
dc.contributor.authorKailas, Miika
dc.contributor.authorPesonen, Henri
dc.contributor.authorCorander, Jukka
dc.contributor.authorKaski, Samuel
dc.contributor.authorPitkänen, Esa
dc.contributor.authorMustonen, Ville
dc.date.accessioned2022-12-19T12:00:10Z
dc.date.available2022-12-19T12:00:10Z
dc.date.issued2022
dc.identifier.citationKičiatovas, D., Guo, Q., Kailas, M., Pesonen, H., Corander, J., Kaski, S., Pitkänen, E., & Mustonen, V. (2022). Identification of multiplicatively acting modulatory mutational signatures in cancer. <i>Bmc bioinformatics</i>, <i>23</i>(1), Article 522. <a href="https://doi.org/10.1186/s12859-022-05060-8" target="_blank">https://doi.org/10.1186/s12859-022-05060-8</a>
dc.identifier.otherCONVID_164460262
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84490
dc.description.abstractBackground A deep understanding of carcinogenesis at the DNA level underpins many advances in cancer prevention and treatment. Mutational signatures provide a breakthrough conceptualisation, as well as an analysis framework, that can be used to build such understanding. They capture somatic mutation patterns and at best identify their causes. Most studies in this context have focused on an inherently additive analysis, e.g. by non-negative matrix factorization, where the mutations within a cancer sample are explained by a linear combination of independent mutational signatures. However, other recent studies show that the mutational signatures exhibit non-additive interactions. Results We carefully analysed such additive model fits from the PCAWG study cataloguing mutational signatures as well as their activities across thousands of cancers. Our analysis identified systematic and non-random structure of residuals that is left unexplained by the additive model. We used hierarchical clustering to identify cancer subsets with similar residual profiles to show that both systematic mutation count overestimation and underestimation take place. We propose an extension to the additive mutational signature model—multiplicatively acting modulatory processes—and develop a maximum-likelihood framework to identify such modulatory mutational signatures. The augmented model is expressive enough to almost fully remove the observed systematic residual patterns. Conclusion We suggest the modulatory processes biologically relate to sample specific DNA repair propensities with cancer or tissue type specific profiles. Overall, our results identify an interesting direction where to expand signature analysis.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBiomed Central
dc.relation.ispartofseriesBmc bioinformatics
dc.rightsCC BY 4.0
dc.subject.othermutational signatures
dc.subject.othermodulatory processes
dc.subject.othercancer
dc.titleIdentification of multiplicatively acting modulatory mutational signatures in cancer
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202212195744
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1471-2105
dc.relation.numberinseries1
dc.relation.volume23
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysosyöpätaudit
dc.subject.ysomutaatiot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
jyx.subject.urihttp://www.yso.fi/onto/yso/p15346
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1186/s12859-022-05060-8
jyx.fundinginformationThe Project is funded by Academy of Finland Grant Nos. 345829 and 322675, European Research Council Grant Nos. 742158 and 742158 and Sigrid Jusélius Foundation
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0