Identification of multiplicatively acting modulatory mutational signatures in cancer
Kičiatovas, D., Guo, Q., Kailas, M., Pesonen, H., Corander, J., Kaski, S., Pitkänen, E., & Mustonen, V. (2022). Identification of multiplicatively acting modulatory mutational signatures in cancer. Bmc bioinformatics, 23(1), Article 522. https://doi.org/10.1186/s12859-022-05060-8
Julkaistu sarjassa
Bmc bioinformaticsTekijät
Päivämäärä
2022Tekijänoikeudet
© The Author(s) 2022
Background
A deep understanding of carcinogenesis at the DNA level underpins many advances in cancer prevention and treatment. Mutational signatures provide a breakthrough conceptualisation, as well as an analysis framework, that can be used to build such understanding. They capture somatic mutation patterns and at best identify their causes. Most studies in this context have focused on an inherently additive analysis, e.g. by non-negative matrix factorization, where the mutations within a cancer sample are explained by a linear combination of independent mutational signatures. However, other recent studies show that the mutational signatures exhibit non-additive interactions.
Results
We carefully analysed such additive model fits from the PCAWG study cataloguing mutational signatures as well as their activities across thousands of cancers. Our analysis identified systematic and non-random structure of residuals that is left unexplained by the additive model. We used hierarchical clustering to identify cancer subsets with similar residual profiles to show that both systematic mutation count overestimation and underestimation take place. We propose an extension to the additive mutational signature model—multiplicatively acting modulatory processes—and develop a maximum-likelihood framework to identify such modulatory mutational signatures. The augmented model is expressive enough to almost fully remove the observed systematic residual patterns.
Conclusion
We suggest the modulatory processes biologically relate to sample specific DNA repair propensities with cancer or tissue type specific profiles. Overall, our results identify an interesting direction where to expand signature analysis.
...
Julkaisija
Biomed CentralISSN Hae Julkaisufoorumista
1471-2105Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164460262
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The Project is funded by Academy of Finland Grant Nos. 345829 and 322675, European Research Council Grant Nos. 742158 and 742158 and Sigrid Jusélius FoundationLisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Circulating microRNA signature predicts cancer incidence in Lynch syndrome : a pilot study
Sievänen, Tero; Jokela, Tiina; Hyvärinen, Matti; Korhonen, Tia-Marje; Pylvänäinen, Kirsi; Mecklin, Jukka-Pekka; Karvanen, Juha; Sillanpää, Elina; Seppälä, Toni T.; Laakkonen, Eija K. (American Association for Cancer Research (AACR), 2024)Lynch syndrome (LS) is the most common autosomal dominant cancer syndrome and is characterized by high genetic cancer risk modified by lifestyle factors. This study explored whether a circulating microRNA (c-miR) signature ... -
Somatic mutation profiles as molecular classifiers of ulcerative colitis‐associated colorectal cancer
Mäki‐Nevala, Satu; Ukwattage, Sanjeevi; Olkinuora, Alisa; Almusa, Henrikki; Ahtiainen, Maarit; Ristimäki, Ari; Seppälä, Toni; Lepistö, Anna; Mecklin, Jukka‐Pekka; Peltomäki, Päivi (John Wiley & Sons, 2021)Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis‐associated colorectal carcinomas ... -
Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI
Jin, Shan; Xu, Hongming; Dong, Yue; Hao, Xinyu; Qin, Fengying; Wang, Ranran; Cong, Fengyu (IEEE, 2023)Lymph node metastasis (LNM) is an important prognostic factor for recurrence and overall survival of cancer patients. The current LNM diagnosis is based on histopathologic examination after surgical lymphadenectomy, but ... -
Predicting physical activity change in cancer survivors : an application of the Health Action Process Approach
Hardcastle, Sarah J.; Maxwell-Smith, Chloe; Hagger, Martin S. (Springer, 2022)Purpose Previous research has not examined the utility of the Health Action Process Approach (HAPA) to predict physical activity (PA) change in cancer survivors. The aim of the study was to investigate the efficacy of a ... -
Does breast carcinoma belong to the Lynch syndrome tumor spectrum? : Somatic mutational profiles vs. ovarian and colorectal carcinomas
Porkka, Noora K.; Olkinuora, Alisa; Kuopio, Teijo; Ahtiainen, Maarit; Eldfors, Samuli; Almusa, Henrikki; Mecklin, Jukka-Pekka; Peltomäki, Päivi (Impact Journals LLC, 2020)Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.