Näytä suppeat kuvailutiedot

dc.contributor.authorMattola, Salla
dc.contributor.authorMäntylä, Elina
dc.contributor.authorAho, Vesa
dc.contributor.authorSalminen, Sami
dc.contributor.authorLeclerc, Simon
dc.contributor.authorOittinen, Mikko
dc.contributor.authorSalokas, Kari
dc.contributor.authorJärvensivu, Jani
dc.contributor.authorHakanen, Satu
dc.contributor.authorIhalainen, Teemu O.
dc.contributor.authorViiri, Keijo
dc.contributor.authorVihinen-Ranta, Maija
dc.date.accessioned2022-12-15T08:21:05Z
dc.date.available2022-12-15T08:21:05Z
dc.date.issued2022
dc.identifier.citationMattola, S., Mäntylä, E., Aho, V., Salminen, S., Leclerc, S., Oittinen, M., Salokas, K., Järvensivu, J., Hakanen, S., Ihalainen, T. O., Viiri, K., & Vihinen-Ranta, M. (2022). G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. <i>Frontiers in cell and developmental biology</i>, <i>10</i>, Article 1070599. <a href="https://doi.org/10.3389/fcell.2022.1070599" target="_blank">https://doi.org/10.3389/fcell.2022.1070599</a>
dc.identifier.otherCONVID_164318381
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84400
dc.description.abstractThe nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.ispartofseriesFrontiers in cell and developmental biology
dc.rightsCC BY 4.0
dc.subject.othercanine parvovirus
dc.subject.othernuclear egress of capsids
dc.subject.otherCRM1
dc.subject.otherG2/M checkpoint
dc.subject.othercyclin B1
dc.subject.otherapoptosis
dc.titleG2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202212155655
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2296-634X
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 Mattola, Mäntylä, Aho, Salminen, Leclerc, Oittinen, Salokas, Järvensivu, Hakanen, Ihalainen, Viiri and Vihinen-Ranta
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber330896
dc.subject.ysosolukierto
dc.subject.ysogeenit
dc.subject.ysosolubiologia
dc.subject.ysoparvovirukset
dc.subject.ysosolut
dc.subject.ysoisäntäsolut
dc.subject.ysobakteerit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39292
jyx.subject.urihttp://www.yso.fi/onto/yso/p147
jyx.subject.urihttp://www.yso.fi/onto/yso/p18492
jyx.subject.urihttp://www.yso.fi/onto/yso/p21764
jyx.subject.urihttp://www.yso.fi/onto/yso/p2409
jyx.subject.urihttp://www.yso.fi/onto/yso/p27923
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3389/fcell.2022.1070599
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was financed by the Jane and Aatos Erkko Foundation (MV-R); Academy of Finland under the award numbers 332615 (EM), 308315 and 314106 (TI), 310011 and 337582 (KV), 330896 (MV-R), and the Biocenter Finland, viral gene transfer (MV-R), and the Graduate School of the University of Jyväskylä (SM).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0