Näytä suppeat kuvailutiedot

dc.contributor.authorPrezja, Fabi
dc.contributor.authorPaloneva, Juha
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorNiinimäki, Esko
dc.contributor.authorÄyrämö, Sami
dc.date.accessioned2022-11-16T12:37:16Z
dc.date.available2022-11-16T12:37:16Z
dc.date.issued2022
dc.identifier.citationPrezja, F., Paloneva, J., Pölönen, I., Niinimäki, E., & Äyrämö, S. (2022). DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. <i>Scientific Reports</i>, <i>12</i>, Article 18573. <a href="https://doi.org/10.1038/s41598-022-23081-4" target="_blank">https://doi.org/10.1038/s41598-022-23081-4</a>
dc.identifier.otherCONVID_160107769
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83951
dc.description.abstractRecent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process for which such regulatory limitations limit the potential for new breakthroughs and collaborations. However, generating medically accurate synthetic data can alleviate privacy issues and potentially augment deep learning pipelines. This study presents generative adversarial neural networks capable of generating realistic images of knee joint X-rays with varying osteoarthritis severity. We offer 320,000 synthetic (DeepFake) X-ray images from training with 5,556 real images. We validated our models regarding medical accuracy with 15 medical experts and for augmentation effects with an osteoarthritis severity classification task. We devised a survey of 30 real and 30 DeepFake images for medical experts. The result showed that on average, more DeepFakes were mistaken for real than the reverse. The result signified sufficient DeepFake realism for deceiving the medical experts. Finally, our DeepFakes improved classification accuracy in an osteoarthritis severity classification task with scarce real data and transfer learning. In addition, in the same classification task, we replaced all real training data with DeepFakes and suffered only a 3.79% loss from baseline accuracy in classifying real osteoarthritis X-rays.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reports
dc.rightsCC BY 4.0
dc.titleDeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202211165245
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2045-2322
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysoradiologia
dc.subject.ysonivelrikko
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysodiagnostiikka
dc.subject.ysopolvet
dc.subject.ysoröntgenkuvaus
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6402
jyx.subject.urihttp://www.yso.fi/onto/yso/p12334
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p14204
jyx.subject.urihttp://www.yso.fi/onto/yso/p10181
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41598-022-23081-4
jyx.fundinginformationThe work is related to the AI Hub Central Finland project that has received funding from Council of Tampere Region and European Regional Development Fund and Leverage from the EU 2014–2020. This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0