Show simple item record

dc.contributor.authorPatron, Anri
dc.contributor.authorAnnala, Leevi
dc.contributor.authorLainiala, Olli
dc.contributor.authorPaloneva, Juha
dc.contributor.authorÄyrämö,Sami
dc.date.accessioned2022-11-15T07:59:10Z
dc.date.available2022-11-15T07:59:10Z
dc.date.issued2022
dc.identifier.citationPatron, A., Annala, L., Lainiala, O., Paloneva, J., & Äyrämö, S. (2022). An Automatic Method for Assessing Spiking of Tibial Tubercles Associated with Knee Osteoarthritis. <i>Diagnostics</i>, <i>12</i>(11), Article 2603. <a href="https://doi.org/10.3390/diagnostics12112603" target="_blank">https://doi.org/10.3390/diagnostics12112603</a>
dc.identifier.otherCONVID_159513232
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83892
dc.description.abstractEfficient and scalable early diagnostic methods for knee osteoarthritis are desired due to the disease’s prevalence. The current automatic methods for detecting osteoarthritis using plain radiographs struggle to identify the subjects with early-stage disease. Tibial spiking has been hypothesized as a feature of early knee osteoarthritis. Previous research has demonstrated an association between knee osteoarthritis and tibial spiking, but the connection to the early-stage disease has not been investigated. We study tibial spiking as a feature of early knee osteoarthritis. Additionally, we develop a deep learning based model for detecting tibial spiking from plain radiographs. We collected and graded 913 knee radiographs for tibial spiking. We conducted two experiments: experiments A and B. In experiment A, we compared the subjects with and without tibial spiking using Mann-Whitney U-test. Experiment B consisted of developing and validating an interpretative deep learning based method for predicting tibial spiking. The subjects with tibial spiking had more severe Kellgren-Lawrence grade, medial joint space narrowing, and osteophyte score in the lateral tibial compartment. The developed method achieved an accuracy of 0.869. We find tibial spiking a promising feature in knee osteoarthritis diagnosis. Furthermore, the detection can be automatized.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesDiagnostics
dc.rightsCC BY 4.0
dc.subject.othertibial spiking
dc.subject.otherconvolutional neural networks
dc.titleAn Automatic Method for Assessing Spiking of Tibial Tubercles Associated with Knee Osteoarthritis
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202211155190
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2075-4418
dc.relation.numberinseries11
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodiagnostiikka
dc.subject.ysopolvet
dc.subject.ysosääriluu
dc.subject.ysotuki- ja liikuntaelinten taudit
dc.subject.ysonivelrikko
dc.subject.ysoröntgenkuvaus
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p14204
jyx.subject.urihttp://www.yso.fi/onto/yso/p14846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2500
jyx.subject.urihttp://www.yso.fi/onto/yso/p12334
jyx.subject.urihttp://www.yso.fi/onto/yso/p10181
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/diagnostics12112603
jyx.fundinginformationThe work is related to the AI Hub Central Finland project that has received funding from the Council of Tampere Region and European Regional Development Fund and Leverage from the EU 2014-2020. This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0