dc.contributor.author | Le Donne, Enrico | |
dc.contributor.author | Tripaldi, Francesca | |
dc.date.accessioned | 2022-10-24T09:59:33Z | |
dc.date.available | 2022-10-24T09:59:33Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Le Donne, E., & Tripaldi, F. (2022). A Cornucopia of Carnot Groups in Low Dimensions. <i>Analysis and Geometry in Metric Spaces</i>, <i>10</i>(1), 155-289. <a href="https://doi.org/10.1515/agms-2022-0138" target="_blank">https://doi.org/10.1515/agms-2022-0138</a> | |
dc.identifier.other | CONVID_159235579 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83636 | |
dc.description.abstract | Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invariant 1-forms, a basis of right-invariant vector fields, and some other properties. We exhibit all stratified groups in dimension up to 7 and also study some free-nilpotent groups in dimension up to 14. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Walter de Gruyter GmbH | |
dc.relation.ispartofseries | Analysis and Geometry in Metric Spaces | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Carnot groups | |
dc.subject.other | stratified groups | |
dc.subject.other | nilpotent Lie algebras | |
dc.subject.other | free nilpotent groups | |
dc.subject.other | exponential coordinates | |
dc.subject.other | associated Carnot-graded Lie algebra | |
dc.title | A Cornucopia of Carnot Groups in Low Dimensions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202210244949 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Geometrinen analyysi ja matemaattinen fysiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Geometric Analysis and Mathematical Physics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 155-289 | |
dc.relation.issn | 2299-3274 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 10 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 E. Le Donne and F. Tripaldi, published by De Gruyter. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 288501 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 322898 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | harmoninen analyysi | |
dc.subject.yso | Lien ryhmät | |
dc.subject.yso | differentiaaligeometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28124 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39641 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1515/agms-2022-0138 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | E.L.D. and F.T were partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). F.T. was also partially supported by the University of Bologna, funds for selected research topics, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777822 GHAIA (‘Geometric and Harmonic Analysis with Interdisciplinary Applications’). | |
dc.type.okm | A1 | |