Show simple item record

dc.contributor.authorLe Donne, Enrico
dc.contributor.authorTripaldi, Francesca
dc.date.accessioned2022-10-24T09:59:33Z
dc.date.available2022-10-24T09:59:33Z
dc.date.issued2022
dc.identifier.citationLe Donne, E., & Tripaldi, F. (2022). A Cornucopia of Carnot Groups in Low Dimensions. <i>Analysis and Geometry in Metric Spaces</i>, <i>10</i>(1), 155-289. <a href="https://doi.org/10.1515/agms-2022-0138" target="_blank">https://doi.org/10.1515/agms-2022-0138</a>
dc.identifier.otherCONVID_159235579
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83636
dc.description.abstractStratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invariant 1-forms, a basis of right-invariant vector fields, and some other properties. We exhibit all stratified groups in dimension up to 7 and also study some free-nilpotent groups in dimension up to 14.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWalter de Gruyter GmbH
dc.relation.ispartofseriesAnalysis and Geometry in Metric Spaces
dc.rightsCC BY 4.0
dc.subject.otherCarnot groups
dc.subject.otherstratified groups
dc.subject.othernilpotent Lie algebras
dc.subject.otherfree nilpotent groups
dc.subject.otherexponential coordinates
dc.subject.otherassociated Carnot-graded Lie algebra
dc.titleA Cornucopia of Carnot Groups in Low Dimensions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202210244949
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineGeometrinen analyysi ja matemaattinen fysiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineGeometric Analysis and Mathematical Physicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange155-289
dc.relation.issn2299-3274
dc.relation.numberinseries1
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 E. Le Donne and F. Tripaldi, published by De Gruyter.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber288501
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber322898
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysoharmoninen analyysi
dc.subject.ysoLien ryhmät
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
jyx.subject.urihttp://www.yso.fi/onto/yso/p39641
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1515/agms-2022-0138
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationE.L.D. and F.T were partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). F.T. was also partially supported by the University of Bologna, funds for selected research topics, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777822 GHAIA (‘Geometric and Harmonic Analysis with Interdisciplinary Applications’).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0