Convergence of dynamic programming principles for the p-Laplacian
del Teso, F., Manfredi, J. J., & Parviainen, M. (2022). Convergence of dynamic programming principles for the p-Laplacian. Advances in Calculus of Variations, 15(2), 191-212. https://doi.org/10.1515/acv-2019-0043
Julkaistu sarjassa
Advances in Calculus of VariationsPäivämäärä
2022Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2020 Walter de Gruyter GmbH, Berlin/Boston
We provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously known cases for continuous and discrete dynamic programming principles, provides new results, and gives a convergence proof free of probability arguments.
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
1864-8258Asiasanat
Dirichlet problem dynamic programming principle discrete approximations asymptotic mean value properties convergence monotone approximations viscosity solution generalized viscosity solution equivalent notions of solutions numerical methods osittaisdifferentiaaliyhtälöt approksimointi numeeriset menetelmät
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35081270
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The first author is supported by the Toppforsk (research excellence) project Waves and Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway, and by the grant PGC2018-094522-B-I00 from the MICINN of the Spanish Government. The third author is supported by the Academy of Finland project no. 298641.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Local regularity estimates for general discrete dynamic programming equations
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (Elsevier, 2022)We obtain an analytic proof for asymptotic Hölder estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for ... -
Equivalence of viscosity and weak solutions for a p-parabolic equation
Siltakoski, Jarkko (Springer, 2021)We study the relationship of viscosity and weak solutions to the equation partial derivative(t)u - Delta(p)u = f (Du), where p > 1 and f is an element of C(R-N) satisfies suitable assumptions. Our main result is that bounded ... -
Regularity properties of tug-of-war games and normalized equations
Ruosteenoja, Eero (University of Jyväskylä, 2017) -
On O(h[sup4])-superconvergence of piecewise bilinear FE-approximations
Křîžek, Michal; Neittaanmäki, Pekka (University of Jyväskylä, 1987) -
On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems
Haslinger, J.; Neittaanmäki, Pekka (University of Jyväskylä, 1983)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.