Equivalence of viscosity and weak solutions for a p-parabolic equation
Siltakoski, J. (2021). Equivalence of viscosity and weak solutions for a p-parabolic equation. Journal of Evolution Equations, 21(2), 2047-2080. https://doi.org/10.1007/s00028-020-00666-y
Julkaistu sarjassa
Journal of Evolution EquationsTekijät
Päivämäärä
2021Tekijänoikeudet
© 2021 The Author(s)
We study the relationship of viscosity and weak solutions to the equation partial derivative(t)u - Delta(p)u = f (Du), where p > 1 and f is an element of C(R-N) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when p >= 2.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1424-3199Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51626332
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Remarks on regularity for p-Laplacian type equations in non-divergence form
Attouchi, Amal; Ruosteenoja, Eero (Academic Press, 2018)We study a singular or degenerate equation in non-divergence form modeled on the p-Laplacian, −|Du|γ(Δu+(p−2)Δ∞ Nu)=finΩ. We investigate local C1,α regularity of viscosity solutions in the full range γ>−1 and p>1, and ... -
Regularity properties of tug-of-war games and normalized equations
Ruosteenoja, Eero (University of Jyväskylä, 2017) -
Convergence of dynamic programming principles for the p-Laplacian
del Teso, Félix; Manfredi, Juan J.; Parviainen, Mikko (De Gruyter, 2022)We provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously ... -
C1,α-regularity for variational problems in the Heisenberg group
Mukherjee, Shirsho; Zhong, Xiao (Mathematical Sciences Publishers, 2021)We study the regularity of minima of scalar variational integrals of p-growth, 1<p><∞, in the Heisenberg group and prove the Hölder continuity of horizontal gradient of minima.</p> -
Local regularity estimates for general discrete dynamic programming equations
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (Elsevier, 2022)We obtain an analytic proof for asymptotic Hölder estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.