Electrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other
Domínguez-Flores, F., & Melander, M. M. (2022). Electrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other. Current Opinion in Electrochemistry, 36, Article 101110. https://doi.org/10.1016/j.coelec.2022.101110
Published in
Current Opinion in ElectrochemistryDate
2022Discipline
Nanoscience CenterFysikaalinen kemiaResurssiviisausyhteisöNanoscience CenterPhysical ChemistrySchool of Resource WisdomCopyright
© 2022 The Author(s). Published by Elsevier B.V.
Electrochemical interfaces present an extraordinarily complex reaction environment and several, often counter-acting, interactions contribute to rate constants of electrocatalytic reactions. We compile a short review on how electrode potential, solvent, electrolyte, and pH effects on electrocatalytic rates can be understood and modelled using computational and theoretical methods. We address the connections between computational models based on DFT and (semi)analytical model Hamiltonians to extract physical or chemical insights, identify some omissions in present DFT simulation approaches and analytic models, and discuss what and how simulations and models could learn from each other.
Publisher
ElsevierISSN Search the Publication Forum
2451-9103Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/151048395
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Research Fellow, AoFAdditional information about funding
This work was supported by the Academy of Finland through the CompEl project (#338228).License
Related items
Showing items with similar title or keywords.
-
Electronic structure methods for simulating the applied potential in semiconductor electrochemistry
Moradi, Kayvan; Melander, Marko M. (Elsevier, 2025)Semiconductor electrodes (SCEs) play a decisive role in e.g. clean energy conversion technologies but understanding their complex electrochemistry remains an outstanding challenge. Herein, we review electronic structure ... -
Deep eutectic solvent and laser-reduced graphene oxide : synergistic effects in ternary nanocomposite supercapacitors
Laelabadi, Katayoon Gholami; Moradi, Kayvan; Salimi, Abdollah (Elsevier, 2024)In recent years, flexible supercapacitors (FSCs) have gained considerable attention as reliable power supplies for wearable and portable electronic devices. However, optimizing both energy and power densities remains a ... -
Approximating constant potential DFT with canonical DFT and electrostatic corrections
Domínguez-Flores, Fabiola; Melander, Marko M. (AIP Publishing, 2023)The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. ... -
Frozen or dynamic? : An atomistic simulation perspective on the timescales of electrochemical reactions
Melander, Marko M. (Elsevier BV, 2023)Electrochemical systems span a wide range of timescales, and several recent works have put forth the idea that the reaction environment should remain frozen and out of equilibrium during electrochemical electron or proton ... -
Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials
Melander, Marko; Kuisma, Mikael; Christensen, Thorbjørn Erik Køppen; Honkala, Karoliina (AIP Publishing LLC, 2019)Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard ...