dc.contributor.author | Domínguez-Flores, Fabiola | |
dc.contributor.author | Melander, Marko M. | |
dc.date.accessioned | 2022-09-02T08:47:14Z | |
dc.date.available | 2022-09-02T08:47:14Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Domínguez-Flores, F., & Melander, M. M. (2022). Electrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other. <i>Current Opinion in Electrochemistry</i>, <i>36</i>, Article 101110. <a href="https://doi.org/10.1016/j.coelec.2022.101110" target="_blank">https://doi.org/10.1016/j.coelec.2022.101110</a> | |
dc.identifier.other | CONVID_151048395 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82924 | |
dc.description.abstract | Electrochemical interfaces present an extraordinarily complex reaction environment and several, often counter-acting, interactions contribute to rate constants of electrocatalytic reactions. We compile a short review on how electrode potential, solvent, electrolyte, and pH effects on electrocatalytic rates can be understood and modelled using computational and theoretical methods. We address the connections between computational models based on DFT and (semi)analytical model Hamiltonians to extract physical or chemical insights, identify some omissions in present DFT simulation approaches and analytic models, and discuss what and how simulations and models could learn from each other. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Current Opinion in Electrochemistry | |
dc.rights | CC BY 4.0 | |
dc.subject.other | solvent | |
dc.subject.other | electrolyte | |
dc.subject.other | pH | |
dc.subject.other | electrode potential | |
dc.subject.other | rate constant | |
dc.title | Electrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other | |
dc.type | review article | |
dc.identifier.urn | URN:NBN:fi:jyu-202209024457 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2451-9103 | |
dc.relation.volume | 36 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Author(s). Published by Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 338228 | |
dc.subject.yso | liuottimet | |
dc.subject.yso | elektrodit | |
dc.subject.yso | sähkökemia | |
dc.subject.yso | elektrokatalyysi | |
dc.subject.yso | termodynamiikka | |
dc.subject.yso | laskennallinen kemia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20402 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14077 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8093 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38660 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14558 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23053 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.coelec.2022.101110 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland through the CompEl project (#338228). | |
dc.type.okm | A2 | |